Effect of high-pressure torsion on mechanical properties and in vitro biocompatibility of pure Zn

N.S. Martynenko, N.Y. Anisimova, N.Y. Tabachkova, V.N. Serebryany, O.V. Rybalchenko, A.V. Sannikov, D.R. Temralieva, E.A. Lukyanova, E.A. Kornjushenkov, M.V. Kiselevskiy, S.V. Dobatkin показать трудоустройства и электронную почту
Получена 16 мая 2023; Принята 07 июля 2023;
Эта работа написана на английском языке
Цитирование: N.S. Martynenko, N.Y. Anisimova, N.Y. Tabachkova, V.N. Serebryany, O.V. Rybalchenko, A.V. Sannikov, D.R. Temralieva, E.A. Lukyanova, E.A. Kornjushenkov, M.V. Kiselevskiy, S.V. Dobatkin. Effect of high-pressure torsion on mechanical properties and in vitro biocompatibility of pure Zn. Письма о материалах. 2023. Т.13. №4. С.308-311
BibTex   https://doi.org/10.22226/2410-3535-2023-4-308-311

Аннотация

Mechanical properties, corrosion resistance and biocompatibility in vitro of pure Zn processed by high pressure torsion (HPT) were studied. Grain refinement and texture changes caused by HPT increase strength and ductility. HPT does not worsen the RBC hemolysis and ML viability of pure Zn. HPT insignificantly increases the degradation rate.Effect of the structure and texture caused by high pressure torsion (HPT) on mechanical properties, corrosion resistance and in vitro biocompatibility of pure Zn was studied. HPT leads to the formation of an ultrafine-grained (UFG) structure with an average grain size of 710 ± 40 nm. In addition, a sharp basal texture is formed in pure Zn after HPT. These structure and texture features lead to an increase in the ultimate tensile strength of pure Zn by 5.5 times while the ductility grows significantly. Pure Zn in both microstructural states does not increase the hemolytic activity of red blood cells. An interesting observation is the reduction of the cytotoxicity of pure Zn after HPT, which can be associated with a slight increase in its degradation rate.

Ссылки (23)

1. W. Yuan, D. Xia, S. Wu, Y. Zheng, Z. Guan, J. V. Rau. Bioact. Mater. 7, 192 (2022). Crossref
2. X. Zhu, T. Ren, P. Guo, L. Yang, Y. Shi, W. Sun, Z. Song. Mater. Today Commun. 31, 103639 (2022). Crossref
3. X. Tong, L. Zhu, K. Wang, Z. Shi, S. Huang, Y. Li, J. Ma, C. Wen, J. Lin. Acta Biomater. 142, 361 (2022). Crossref
4. C. García-Mintegui, L. C. Córdoba, J. Buxadera-Palomero, A. Marquina, E. Jiménez-Piqué, M.-P. Ginebra, J. L. Cortina, M. Pegueroles. Bioact. Mater. 6 (12), 4430 (2021). Crossref
5. C. García-Mintegui, I. Goncharov, L. Ortiz-Membrado, E. Jiménez-Piqué, M.-P. Ginebra, M. Vedani, J. L. Cortina, M. Pegueroles. Mater. Des. 228, 111817 (2023). Crossref
6. B. Jia, H. Yang, Z. Zhang, X. Qu, X. Jia, Q. Wu, Y. Han, Y. Zheng, K. Dai. Bioact. Mater. 6 (6), 1588 (2021). Crossref
7. H. F. Li, X. H. Xie, Y. F. Zheng, Y. Cong, F. Y. Zhou, K. J. Qiu, X. Wang, S. H. Chen, L. Huang, L. Tian, L. Qin. Sci. Rep. 5, 10719 (2015). Crossref
8. C. Wang, Y. Hu, C. Zhong, C. Lan, W. Li, X. Wang. Mater. Sci. Eng. A. 846, 143276 (2022). Crossref
9. N. Martynenko, E. Lukyanova, N. Anisimova, M. Kiselevskiy, V. Serebryany, N. Yurchenko, G. Raab, N. Birbilis, G. Salishchev, S. Dobatkin, Y. Estrin. Materialia. 13, 100841 (2020). Crossref
10. W. Bednarczyk, M. Wątroba, J. Kawałko, P. Bała. Mater. Sci. Eng. A. 748, 357 (2019). Crossref
11. H. Huang, H. Liu, L.-S. Wang, Y.-H. Li, S.-O. Agbedor, J. Bai, F. Xue, J.-H. Jiang. Acta Metall. Sin-Engl. 33, 1191 (2020). Crossref
12. L. Ye, C. Sun, X. Zhuo, H. Liu, J. Ju, F. Xue, J. Bai, J. Jiang, Y. Xin. J. Alloys Compd. 919, 165871 (2022). Crossref
13. B. Srinivasarao, A. P. Zhilyaev, T. G. Langdon, M. T. Pérez-Prado. Mater. Sci. Eng. A. 562, 196 (2013). Crossref
14. M. V. Polenok, E. D. Khafizova, R. K. Islamgaliev. Frontier Materials & Technologies. 3 - 2, 25 (2022). (in Russian) [М. В. Поленок, Э. Д. Хафизова, Р. К. Исламгалиев. Frontier Materials & Technologies. 3 - 2, 25 (2022).]. Crossref
15. T. I. Savyolova, S. F. Kourtasov. Mater. Sci. Forum, 459 - 457, 301 (2005). Crossref
16. V. N. Serebryany, L. L. Rokhlin, A. N. Monina. Inorg. Mater. Appl. Res. 5 (2), 116 (2014). Crossref
17. ASTM G31-21, Standard guide for laboratory immersion corrosion testing of metals, ASTM International, West Conshohocken, PA, ASTM International (2004).
18. N. Martynenko, N. Anisimova, O. Rybalchenko, M. Kiselevskiy, G. Rybalchenko, N. Tabachkova, M. Zheleznyi, D. Prosvirnin, D. Filonenko, V. Bazhenov, A. Koltygin, V. Belov, S. Dobatkin. Metals. 12 (10), 1681 (2022). Crossref
19. A. P. Zhilyaev, T. G. Langdon. Prog. Mater. Sci. 53, 893 (2008). Crossref
20. L. Ye, H. Liu, C. Sun, X. Zhuo, J. Ju, F. Xue, J. Bai, J. Jiang, Y. Xin. J. Alloys Compd. 926, 166906 (2022). Crossref
21. N. Martynenko, N. Anisimova, O. Rybalchenko, M. Kiselevskiy, G. Rybalchenko, N. Tabachkova, M. Zheleznyi, D. Temralieva, V. Bazhenov, A. Koltygin, A. Sannikov, S. Dobatkin. Materials. 15 (24), 9073 (2022). Crossref
22. A. Bhattacharjee, S. Bose. Mater. Des. 221, 110903 (2022). Crossref
23. J. Ma, N. Zhao, D. Zhu. Sci. Rep. 6, 2666 (2016). Crossref

Другие статьи на эту тему

Влияние ультразвуковой обработки на микроструктуру и микротвердость ультрамелкозернистого никеля, полученного методом кручения под высоким давлением
А.А. Мухаметгалина, А.А. Самигуллина, С.Н. Сергеев, А.П. Жиляев, А.А. Назаров, Ю.Р. Загидуллина, Н.Ю. Пархимович, В.В. Рубаник, Ю.В. Царенко

Финансирование на английском языке

1. Russian Science Foundation - 22-23-00097