Influence of heat treatment on microstructure and hardness of friction stir processed eutectic silumin

N.F. Khayretdinov, D.B. Kabirova, A.K. Valeeva ORCID logo , R.F. Fazlyakhmetov, M.F. Imayev показать трудоустройства и электронную почту
Получена 06 сентября 2023; Принята 27 ноября 2023;
Эта работа написана на английском языке
Цитирование: N.F. Khayretdinov, D.B. Kabirova, A.K. Valeeva, R.F. Fazlyakhmetov, M.F. Imayev. Influence of heat treatment on microstructure and hardness of friction stir processed eutectic silumin. Письма о материалах. 2023. Т.13. №4s. С.505-510
BibTex   https://doi.org/10.22226/2410-3535-2023-4-505-510

Аннотация

The artificial aging did not result in any change in the AK12 alloy's microhardness, whereas T6 treatment led to a uniform increase in microhardness throughout all zones of the sample. There was no significant grain growth observed in the aluminum-based solid solution and silicon particles after these heat treatments.The study investigated the impact of post-weld annealing temperature in the range 350 – 550°C and natural aging on the microstructure and microhardness of the eutectic silumin. It was found that the grain size of the aluminum solid solution and silicon particles in the nugget zone, the thickness of the eutectic interlayer and the volume fraction of α-Al in the heat affected zone remained stable during annealing up to a temperature of 550°C. The microhardness of the specimen remains constant across all zones up to an annealing temperature of 400°C. However, it increases as the temperature increases and peaks at 550°C. The eutectic is approximately 50 HV harder than the dendritic cells. After the natural ageing process following welding, the distribution of microhardness displays a distinct W-shape pattern. Artificial ageing did not affect microhardness of the alloy, whereas solution annealing and artificial ageing (T6 treatment) caused a consistent increase in microhardness across all zones of the specimen.

Ссылки (32)

1. H. Ye, J. Mater. Eng. Perform. 12, 288 (2003). Crossref
2. K. Basavakumar, P. Mukunda, M. Chakraborty. Mater. Charact. 59, 283 (2008). Crossref
3. S. Rathee, S. Maheshwari, A. N. Siddiquee. Mater. Manuf. Process. 33, 239 (2018). Crossref
4. G. B. Stroganov, V. A. Rotenberg, G. B. Gershman. Alloys of aluminum with silicon. Moscow, Metallurgy (1977) 271 p. (in Russian) [Г. Б. Строганов, В. А. Ротенберг, Г. Б. Гершман. Сплавы алюминия с кремнием. Москва, Металлургия (1977) 271 с.].
5. V. S. Zolotarevsky, N. A. Belov. Metal science of cast aluminum alloys. Moscow, MISiS (2005) 376 p. (in Russian) [В. С. Золотаревский, Н. А. Белов. Металловедение литейных алюминиевых сплавов. Москва, МИСиС (2005) 376 c.].
6. P. N. Rao. Manufacturing Technology. New Delhi, McGraw-Hill Education (2013) 512 p.
7. S. Viswanathan, D. Apelian, R. J. Donahue, B. DasGupta, M. Gywn, J. L. Jorstad, R. W. Monroe, M. Sahoo, T. E. Prucha, D. Twarog. ASM Handbook. Volume 15: Casting. ASM International, Materials Park (2008). Crossref
8. V. V. Pochetukha, V. V. Pochetukha. Modern mechanical engineering. Science and Education. 2, 614 (2012). (in Russian) [В. В. Почетуха, В. В. Почетуха. Современное машиностроение. Наука и образование. 2, 614 (2012).].
9. A. N. Prudnikov, V. A. Prudnikov. Actual problems in mechanical engineering. 5 (1-2), 126 (2018). (in Russian) [А. Н. Прудников, В. А. Прудников. Актуальные проблемы в машиностроении. 1 - 2, 126 (2018).].
10. R. Sh. Mishra, P. S. De, N. Kumar. Friction Stir Welding and Processing. Science and Engineering. Springer (2014) 338 p. Crossref
11. E. A. El-Danaf, M. M. El-Rayes, M. S. Soliman. Mater. Des. 31, 1231 (2010). Crossref
12. M. M. El-Sayed, A. Y. Shash, M. Abd-Rabou, M. G. ElSherbiny. Journal of Advanced Joining Processes. 3, 100059 (2021). Crossref
13. R. S. Mishra, Z. Y. Ma. Mater. Sci. Eng. R. 50, 1 (2005). Crossref
14. Y. X. Gao, J. Z. Yi, P. D. Lee, T. C. Lindley. FFEMS. 27, 559 (2004). Crossref
15. F. J. Humphreys, P. N. Kalu. Acta Materialia. 35, 2815 (1987). Crossref
16. S. D. P. Kenningley. First Year PhD Transfer Report, University of Manchester (2007). Available online: https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:263927&datastreamId=FULL-TEXT.PDF.
17. M. A. Safarkhanian, M. Goodarzi, S. M. A. Boutorabi. J. Mater. Sci. 44, 5452 (2009). Crossref
18. Y. S. Sato, H. Kokawa. Metall. Mater. Trans. A. 32A, 3023 (2001). Crossref
19. I. Charit, R. S. Mishra. Scripta Mater. 58, 367 (2008). Crossref
20. C. Y. Lin, T. S. Lui, L. H. Chen. A Study of Microstructural Stability of Friction Stir Welded Joints of Al-Mg Alloys during Subsequent Thermal Exposure. In: Light Metals. Springer, Cham (2012) pp. 527 - 532. Crossref
21. L. Xie, Sh. Liu, X. Liu, M. He, J. Wang, Y. Lu, M. Wang, K. Hu, P. Li, C. Liu, J. Wang. J. of Mater. Eng. Perform. (2023). Crossref
22. А. Kh. Valeeva, A. Kh. Akhunova, D. B. Kabirova, M. F. Imayev, R. F. Fazlyakhmetov. Lett. Mater. 11 (2), 119 (2021). (in Russian) [А. Х. Валеева, А. Х. Ахунова, Д. Б. Кабирова, М. Ф. Имаев, Р. Ф. Фазлыахметов. Письма о материалах. 11 (2), 119 (2021).]. Crossref
23. R. R. Latypova, D. B. Kabirova, N. F. Khayretdinov, R. F. Fazlyakhmetov, M. F. Imayev. Lett. Mater. 12 (4s), 420 (2022). Crossref
24. S. A. Saltykov. Stereometric metallography. Moscow, Metallurgiya (1970) 270 р. (in Russian) [С. А. Салтыков. Стереометрическая металлография. Москва, Металлургия (1970) 270 с.].
25. S. S. Gorelik, S. V. Dobatkin, L. M. Kaputkina. Recrystallization of metals and alloys. Moscow, MISiS (2005) 432 p. (in Russian) [С. С. Горелик, С. В. Добаткин, Л. М. Капуткина. Рекристаллизация металлов и сплавов. Москва, МИСиС (2005) 432 с.].
26. A. Kalinenko, V. Mishin, I. Shishov, S. Malopheyev, I. Zuiko, V. Novikov, S. Mironov, R. Kaibyshev, S. Lee Semiatin. Materials Characterization. 194, 112473 (2022). Crossref
27. Diagrams of the state of binary metal systems: Reference book. Vol. 1. Moscow, Mashinostroenie (1996) 992 p. (in Russian) [Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т. 1. Москва, Машиностроение (1996) 992 с.].
28. Y. S. Sato, H. Kokawa, M. Enomoto, S. Jogan, T. Hashimoto. Metall. Mater. Trans. A. 30, 3125 (1999). Crossref
29. V. Msomi, S. Mabuwa. Advances in Industrial and Manufacturing Engineering. 1, 100002 (2020). Crossref
30. L. F. Mondolfo. Aluminum Alloys: Structure and Properties. Butterworths London-Boston Sydney-Wellington-Durban-Toronto (1976) 97 p.
31. I. I. Novikov, V. S. Zolotorevsky, V. K. Portnoy et. al. (ed. by V. S. Zolotorevsky). Physical Metallurgy. V. 2. Heat treatment. Alloys. Moscow, MISIS (2014) 526 p. (in Russian) [И. И. Новиков, В. С. Золоторевский, В. К. Портной и др. (под ред. В. С. Золоторевского). Металловедение. Т. 2. Термическая обработка. Сплавы. Москва, МИСиС (2014) 526 c.].
32. A. Kalinenko, I. Vysotskii, S. Malopheyev, S. Mironov, R. Kaibyshev. Mater. Sci.& Eng. A. 817, 141409 (2021). Crossref

Другие статьи на эту тему

Финансирование на английском языке

1. Ministry of Science and Higher Education of the Russian Federation according to the State Assignment of the IMSP RAS - AAAA-A19-119021390106-1