The effect of annealing on microstructure and microhardness of low-activation high-manganese austenitic steel

N.A. Polekhina, I.Yu. Litovchenko, S.A. Akkuzin ORCID logo , K.V. Spiridonova, A.V. Kim, V.V. Osipova ORCID logo , V.M. Chernov ORCID logo показать трудоустройства и электронную почту
Получена 29 ноября 2023; Принята 20 февраля 2024;
Эта работа написана на английском языке
Цитирование: N.A. Polekhina, I.Yu. Litovchenko, S.A. Akkuzin, K.V. Spiridonova, A.V. Kim, V.V. Osipova, V.M. Chernov. The effect of annealing on microstructure and microhardness of low-activation high-manganese austenitic steel. Письма о материалах. 2024. Т.14. №1. С.51-56
BibTex   https://doi.org/10.48612/letters/2024-1-51-56

Аннотация

The annealing at 700 °C for 50 h leads to noticeable changes of the carbide subsystem of low-activation high manganese austenitic steel. After solution treatment (ST) it causes precipitation of M23C6 particles along the grain boundaries and on the MC particles. Annealing of the cold-rolled (CR) samples leads to the formation of these particles at the microtwin boundaries.The effect of annealing at 700°C for 50 h of solution-treated (ST) and cold-rolled (CR) samples of low-activation high manganese austenitic steel on its phase composition, microstructure and microhardness is investigated. Carbide subsystem of the steel undergoes significant changes following annealing. After ST, it causes precipitation of M23C6 particles along grain boundaries and on MC particles. Annealing of CR samples leads to the formation of these particles at microtwin boundaries. There are practically no changes in the size and volume fraction of MC carbides after annealing. A depletion of the steel solid solution in carbon due to M23C6 carbides precipitation decreases the austenite stability towards the γ-ε martensitic transformation. This leads to the formation of ε-martensite after CR + annealing. The ε-martensite plates are, presumably, formed as a result of relaxation of local internal stresses generated nearby large M23C6 particles during cooling from 700°C. Microhardness of the steel does not practically change after its annealing. This is due to simultaneous processes of recovery and precipitation of dispersed M23C6 carbides. The former process contributes to a decrease in the substructural strengthening efficiency and the latter — to tan increase in the efficiency of dispersion strengthening.

Ссылки (21)

1. L. I. Ivanov, Yu. M. Platov. Radiation Physics of Metals and Its Applications 2nd Edition. Cambridge International Science Publishing (2004) 356 p.
2. G. S. Was, D. Petti, S. Ukai, S. Zinkle. J. Nucl. Mater. 527, 151837 (2019).
3. Y. Pascal. Structural Materials for Generation IV Nuclear Reactors. Woodhead Publishing Series in Energy: Number 106, Kindle Edition (2020) 644 p.
4. V. V. Sagaradze, A. I. Uvarov. Strengthening and properties of austenitic steels. RIO UrB RAS, Ekaterinburg (2013) 720 p. (in Russian) [В. В. Сагарадзе, А. И. Уваров. Упрочнение и свойства аустенитных сталей. Екатеринбург, РИО УрО РАН (2013) 720 p.].
6. R. L. Klueh, P. J. Maziasz. Mater. Sci. Eng. A. 127, 17 (1990).
7. E. V. Demina, M. D. Prusakova, V. V. Roshchin, N. A. Vinogradova, G. D. Orlova. Inorg. Mater.: Applied Research. 1, 115 (2010).
8. E. V. Demina, L. I. Ivanov, Yu. M. Platov, M. D. Prusakova, S. R. Eikholtser, M. B. Tolochko, F. A. Garner. Inorg. Mater.: Applied Research. 2 (5), 457 (2011).
9. Y. Suzuki, T. Saida, F. Kudough. J. Nucl. Mater. 258, 1687 (1998).
10. M. Onozuka, T. Saida, Sh. Hirai, M. Kusuhashi, I. Sato, T. Hatakeyama. J. Nucl. Mater. 255, 128 (1998).
11. R. L. Klueh, P. J. Maziasz, E. H. Lee. Mater. Sci. Eng. A. 102, 115 (1988).
12. M. H. Lewis, B. Hattersley. Acta Metall. 13, 1159 (1965).
13. W. Ren, L. Wang. J. Alloys Compd. 905, 164013 (2022).
14. G. Chen, R. Rahimi, M. Harwarth, M. Motylenko, G. Xu. Scripta Mater. 213, 114597 (2022).
15. L. M. Roncery, S. Weber, W. Theisen. Acta Mater. 59, 6275 (2011).
16. N. Terao, B. Sasmal. Metallography. 13, 117 (1980).
17. I. Litovchenko, S. Akkuzin, N. Polekhina, K. Almaeva, V. Linnik, A. Kim, E. Moskvichev, V. Chernov. Metals. 12 (12), 2106 (2022).
18. I. Y. Litovchenko, S. A. Akkuzin, N. A. Polekhina, K. V. Almaeva, E. N. Moskvichev, A. V. Kim, V. V. Linnik, V. M. Chernov. Letters on Materials. 12 (4s), 399 (2022).
19. I. Y. Litovchenko, S. A. Akkuzin, N. A. Polekhina, K. V. Spiridonova, A. V. Kim, V. V. Osipova, E. N. Moskvichev, V. M. Chernov. Letters on Materials. 13 (4s), 390 (2023).
20. I. Litovchenko, S. Akkuzin, N. Polekhina, K. Spiridonova, V. Osipova, A. Kim, E. Moskvichev, V. Chernov, A. Kuznetsov. Metals. 13 (12), 2015 (2023).

Другие статьи на эту тему

Финансирование на английском языке

1. the Russian Science Foundation - 22-19-00802