EPR AND MAGNETIC PROPERTIES OF α-BiNb1-xFexO4-δ

N.A. Zhuk, L.S. Feltsinger, N.V. Chezhina, V.P. Lutoev, B.A. Makeev, V.A. Belyy
Received: 17 February 2018; Revised: 04 June 2018; Accepted: 05 June 2018
This paper is written in Russian
Citation: N.A. Zhuk, L.S. Feltsinger, N.V. Chezhina, V.P. Lutoev, B.A. Makeev, V.A. Belyy. EPR AND MAGNETIC PROPERTIES OF α-BiNb1-xFexO4-δ. Letters on Materials, 2018, 8(3) 282-287
BibTex   DOI: 10.22226/2410-3535-2018-3-282-287

Abstract

The results of an investigation of the EPR and the magnetic susceptibility of BiNb1-xFexO4-δ orthorhombic modificationIron-containing ceramic materials based on BiNbO4 of orthorhombic modification were obtained by solid-phase synthesis. The solid solutions α-BiNb1-xFexO4-δ were synthesized of х ≤ 0.03. The single-phase structure of these samples was established by X-ray diffraction and SEM- analyses. In the EPR spectra of BiNb1-xFexO4-δ, a wide band with a center at g = 2.16–2.37 were observed, which had a low-intensity signal with a g-factor of ~ 4.3 on the low-field wing. Along with the broad spectrum component, a "noise-like" signal was observed in the magnetic field range of 190-400 mT, which was formed by a large number of narrow lines related to the integral signal of ferromagnetic resonance and its fine structure. The isotherms of the paramagnetic component of the magnetic susceptibility of iron atoms in BiNb1-xFexO4-δ are typical for antiferromagnets. The value of the effective magnetic moment of iron atoms increases along with the increase in temperature from 5.84 MB (90 K) to 6.43 MB (320 K). This can be explained by the presence of exchange-bound aggregates of Fe (III) atoms with the antiferro- and ferromagnetic types of exchange in the solid solutions. Magnetic behavior of BiNb1-xFexO4-δ was investigated taking into account the presence of possible types of clusters of iron atoms by theoretical calculation of the magnetic susceptibility within the framework of the model of dilute solid solutions. The best agreement between the experimental and calculated data was obtained for the dimer parameters of Jdim - 17 cm-1 and Jdim 45 cm-1, for antiferro-and ferromagnetic type of exchange.

References (27)

1.
S. S. Dunke, K. S. Suslick. J. Phys. Chem. C. 113, 10341 (2009). DOI: 10.1021/jp903163u
2.
H. Kagata, T. Inoue, J. Kato, I. Kameyama. Jpn. J. Appl. Phys. 31, 3152 (1992). DOI: 10.1143/JJAP.31.3152
3.
K. Sang, Y. Kyung. J. Mater. Sci.: Mater. Electron. 9, 351 (1998). DOI: 10.1023/A:1008981120219
4.
Z. Wang, L. Zhang, X. Yao. Ceram. Intern. 30, 1329 (2004). DOI: 10.1016/j.ceramint.2003.12.112
5.
W. Tzou, C. Yang, Y. Chen, P. Cheng. J. Eur. Ceram. Soc. 20, 991 (2000). DOI: 10.1016/S0955-2219(99)00228-9
6.
C. L. Huang, M. H. Weng, C. C. Wu, C. T. Lion. Mater. Res. Bull. 36, 827 (2001). DOI: 10.1016/S0025-5408(00)00458‑X
7.
N. Wang, M. Zhao, Z. Yin, W. Li. Mater. Res. Bull. 39, 439 (2004). DOI: 10.1016/j.materresbull.2003.10.016
8.
Y. Yang, S. Ding, X. Yao. Ceram. Intern. 30, 1335 (2004). DOI: 10.1016/j.ceramint.2003.12.111
9.
Y. Yang, S. Ding. Ceram. Intern. 30, 1341 (2004). DOI: 10.1016/j.ceramint.2003.12.110
10.
D. Shihua, X. Yao, Y. Yong. Ceram. Intern. 30, 1195 (2004). DOI: 10.1016/j.ceramint.2003.12.030
11.
C. Yang. J. Mater. Sci. Lett. 18, 805 (1999). DOI: 10.1023/A:1006697318870
12.
C. Huang, M. Weng, G. Shan. J. Mater. Sci. Lett. 35, 5443 (2000). DOI: 10.1023/A:1004823711748
13.
M. Weng, C. Huang. J. Mater. Sci. Lett. 19, 375 (2000). DOI: 10.1023/A:1006722301181
14.
C. Cheng, S. Lo, C. Yang. Ceram. Intern. 26, 113 (2000). DOI: 10.1016/S0272-8842(99)00027-9
15.
N. Wang, M. Zhao, Z. Yin. Mat. Sci. and Eng.: B. 99, 238 (2003). DOI: 10.1016/S0921-5107(02)00464-6
16.
H. Lee, K. Yoon, E. Kim. Jpn. J. Appl. Phys. 42, 6168 (2003). DOI: 10.1143/JJAP.42.6168
17.
V. T. Kalinnikov, Yu. V. Rakitin. Introduction to magnetochemistry. The method of static magnetic susceptibility in chemistry. Moscow, Science (1980) 302 p. (in Russian) [В. Т. Калинников, Ю. В. Ракитин. Введение в магнетохимию. Метод статической магнитной восприимчивости в химии. Москва, Наука (1980) 302 c.]
18.
R. S. Roth, J. L. Waring. J. Res. Nation. Bur. Stand.‑A. Phys. and Chem. 66А, 451 (1962).
19.
M. A. Subramanian, J. C. Calabrese. Mat. Res. Bull. 28, 523 (1993). DOI: 10.1016/0025-5408(93)90048‑I
20.
L. G. Akselrud, Yu. N. Gryn, P. Yu. Zavalij, V. K. Pecharski, V. S. Fundamentski. CSD — Universal program package for single crystal and / or powder structure data treatment. Thes. Report on 12th ESM. Moscow (1989) Vol. 3, p. 155.
21.
R. D. Shannon. Acta Crystallogr. А. 32, 751 (1976). DOI: 10.1107/S0567739476001551
22.
G. I. Malovichkov, V. G. Grachev, O. F. Schirmer, B. Faust. J. Phys.: Condens. Mater. 23, 3971 (1993). DOI: 10.1088/0953-8984/5/23/024
23.
O. N. Martyanov, S. N. Trukhan, V. F. Yudanov. Appl. Magn. Reson. 33, 57 (2008). DOI: 10.1007/s00723‑008‑0056‑1
24.
N. V. Chezhina, D. A. Korolev, N. A. Zhuk et al. J. Sol. St. Chem. 247, 8 (2017). DOI: 10.1016/j.jssc.2016.12.019
25.
N. A. Zhuk, N. V. Chezhina, V. A. Belyy, B. A. Makeev, L. V. Rychkova. Letters on materials. 7(4), 402 (2017). DOI: 10.22226/2410‑3535‑2017‑4‑402‑406
26.
D. B. Goodenough. Magnetism and the Chemical Bond. Moscow, Metallurgy (1968) 328 p. (in Russian) [Д. Б. Гуденаф. Магнетизм и химическая связь. Москва, Металлургия (1968) 328 с.]
27.
N. A. Zhuk, I. V. Piir, N. V. Chezhina. Rus. J. Gen. Chem. 77, 215 (2007). (in Russian) [Н. А. Жук, И. В. Пийр, Н. В. Чежина. ЖОХ. 77, 240 (2007).] DOI: 10.1134/S1070363207020053