Magnetic susceptibility and NEXAFS spectra of Fe, Mg-codoped bismuth niobate pyrochlore

N.A. Zhuk, B.A. Makeev ORCID logo , S.V. Nekipelov, R.I. Korolev, A.A. Utkin, G.I. Chernykh show affiliations and emails
Received 29 August 2020; Accepted 21 October 2020;
Citation: N.A. Zhuk, B.A. Makeev, S.V. Nekipelov, R.I. Korolev, A.A. Utkin, G.I. Chernykh. Magnetic susceptibility and NEXAFS spectra of Fe, Mg-codoped bismuth niobate pyrochlore. Lett. Mater., 2021, 11(1) 67-72


Iron atoms in solid solutions of magnesium-bismuth niobate have the charge state of Fe3+.Compounds with the pyrochlore structure are attracting inexhaustible interest of scientists due to the manifestation of a wide range of practically useful properties, including dielectric, photocatalytic and magnetic ones. The present work reports on the results of the study by NEXAFS spectroscopy and the static magnetic susceptibility of the electron state and the character of interatomic interactions of iron atoms in Fe-doped of multicomponent bismuth niobate pyrochlore (sp. gr. Fd-3m). Iron-containing solid solutions of the Bi2MgNb2−2xFe2xO9−δ (х ≤ 0.06) composition with the pyrochlore structure were synthesized by the solid-phase method. The lattice constant of dilute solid solutions changes insignificantly with increasing iron content and is close to the parameter of bismuth-magnesium niobate. According to X-ray spectroscopy and magnetic susceptibility data, iron atoms are distributed mainly in the octahedral positions of niobium (V) and are in the dominant amount in the Fe(III) charge state in the form of monomers and highly nuclear exchange-bound clusters with predominantly antiferromagnetic exchange. The parameters of exchange interactions in clusters and the distribution of paramagnetic iron atoms are calculated depending on the concentration of Bi2MgNb2−2xFe2xO9−δ solid solutions. The best agreement between the experimental and calculated values of the paramagnetic component of the magnetic susceptibility for Bi2MgNb2−2xFe2xO9−δ solid solutions was achieved at the following values of the antiferromagnetic exchange parameters in dimers Jdim = −25 cm−1, in trimers Jtrim = −14 cm−1 and tetramers Jtetr = −9 cm−1 and ferromagnetic exchange in dimers — Jdim = 20 cm−1, in trimers Jtrim =16 cm−1 and tetramers Jtetr =11 cm−1.

References (26)

1. G. Giampaoli, T. Siritanon, B. Day, J. Li, M. A. Subramanian. Prog. Sol. St. Chem. 50, 16 (2018). Crossref
2. F. Matteucci, G. Cruciani, M. Dondi, G. Baldi, A. Barzanti. Acta Mater. 55, 2229 (2007). Crossref
3. M. A. Subramanian, G. Aravamudan, G. V. Subba Rao. Prog. Sol. St. Chem. 15, 55 (1983). Crossref
4. Z. Hiroi, J.-I. Yamaura, S. Yonezawa, H. Harima. Physica C: Superconductivity and Appl. 460 - 462, 20 (2007). Crossref
5. Z. Zou, J. Ye, H. Arakawa. Mater. Sci. Engineer.: B. 79, 83 (2001). Crossref
6. R. A. McCauley. J. Appl. Phys. 51, 290 (1980). Crossref
7. C. C. Khaw, K. B. Tan, C. K. Lee, A. R. West. J. Eur. Ceram. Soc. 32, 671 (2012). Crossref
8. M. Valant, D. Suvorov. J. Am. Ceram. Soc. 88, 2540 (2005). Crossref
9. T. A. Vanderah, T. Siegrist, M. W. Lufaso, M. C. Yeager, R. S. Roth, J. C. Nino, S. Yates. Eur. J. Inorgan. Chem. 2006, 4908 (2006). Crossref
10. M. C. Blanco, D. G. Franco, Y. Jalit, E. V. Pannunzio Miner, G. Berndt, Jr. A. Paesano, G. Nieva, R. E. Carbonio. Phys. B: Cond. Mat. 407, 3078 (2012). Crossref
11. Y. Zhang, Z. Zhang, X. Zhu, Z. Liu, Y. Li, T. Al-Kassab. Appl. Phys. A. 115, 661 (2013). Crossref
12. Y. X. Jin, L. X. Li, H. L. Dong, S. H. Yu, D. Xu. J. Alloys Comp. 622, 200 (2015). Crossref
13. P. Y. Tan, K. B. Tan, C. C. Khaw, Z. Zainal, S. K. Chen, M. P. Chon. Ceram. Intern. 40, 4237 (2014). Crossref
14. Q. Guo, L. Li, S. Yu, Z. Sun, H. Zheng, W. Luo. J. Alloys Comp. 767, 259 (2018). Crossref
15. A. Hassan, G. M. Mustafa, S. K. Abbas, S. Atiq, M. Saleem, S. Riaz, S. Naseem. Ceram. Intern. 45, 14576 (2019). Crossref
16. Q. Guo, L. Li, S. Yu, Z. Sun, H. Zheng, J. Li, W. Luo. Ceram. Intern. 44, 333 (2018). Crossref
17. S. Yu, L. Li, H. Zheng. J. Alloys Comp. 699, 68 (2017). Crossref
18. L. G. Akselrud, Yu. N. Grin, P. Yu. Zavalii, V. K. Pecharski, V. S. Fundamentski. CSD, an universal program package for single crystal and / or powder structure data treatment. Twelfth European Crystallogr. Meeting, Collected Abstracts. Moscow (1989).
19. J. Stohr. NEXAFS Spectroscopy. Springer, Berlin (1992). Crossref
20. R. D. Shannon. Acta Crystallogr. А. 32, 751 (1976). Crossref
21. T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Luning, J. Stöhr, R. L. White. Phys. Rev. B. 64, 214422 (2001). Crossref
22. N. A. Zhuk, M. V. Yermolina, V. P. Lutoev, B. A. Makeev, E. A. Belyaeva, N. V. Chezhina. Ceram. Intern. 43, 16919 (2017). Crossref
23. N. A. Zhuk, V. P. Lutoev, B. A. Makeev, N. V. Chezhina, V. A. Belyy, S. V. Nekipelov. Rev. Adv. Mater. Sci. 57, 35 (2018). Crossref
24. N. V. Chezhina, N. A. Zhuk. Russ. J. Gen. Chem. 85, 2520 (2015). Crossref
25. V. G. Kalinnikov, Yu. V. Rakitin. Introduction to Magnetochemistry. Method of Static Magnetic Susceptibility in Chemistry. Nauka, Moscow (1980) 302 p. (in Russian) [В. Г. Калинников, Ю. В. Ракитин. Введение в магнитохимию. Метод статистической магнитной восприимчивости в химии. Наука, Москва (1980) 302 с.].
26. D. Goudenath. Magnetism and chemical bonding. Moscow, Metallurgiya (1968). (in Russian) [Д.Б. Гуденаф. Магнетизм и химическая связь. Москва, Металлургия (1986).].

Similar papers