Magnetic properties and NEXAFS-spectroscopy of Co-doped ferroelectric ceramic Bi5Nb3O15

N.A. Zhuk, S.V. Nekipelov ORCID logo , D.S. Beznosikov, L.V. Rychkova, M.V. Yermolina, B.A. Makeev show affiliations and emails
Received: 03 July 2019; Revised: 08 September 2019; Accepted: 15 September 2019
Citation: N.A. Zhuk, S.V. Nekipelov, D.S. Beznosikov, L.V. Rychkova, M.V. Yermolina, B.A. Makeev. Magnetic properties and NEXAFS-spectroscopy of Co-doped ferroelectric ceramic Bi5Nb3O15. Lett. Mater., 2019, 9(4) 405-408
BibTex   https://doi.org/10.22226/2410-3535-2019-4-405-408

Abstract

The analysis of the NEXAFS Co2p-spectra of cobalt-containing solid solutions and cobalt oxides revealed that the studied Co atoms were mainly in the +2 and +3 oxidation state, which correlates well with the magnetochemical study data.The majority of bismuth-containing compounds with a layered perovskite-like structure, analogues of the so-called Aurivillius phases, are of practical and theoretical interest owing to their ferroelectric properties. Bismuth niobate Bi5Nb3O15 belongs to the group of mixed layered compounds. Its structure is characterized by the ordered alternation of fragments formed by one and two niobium-oxygen octahedra. Magnetic properties and NEXAFS of cobalt-containing solid solutions with a layered perovskite-like structure Bi5Nb3−3xCo3xO15−δ have been studied. Solid solutions of Bi5Nb3−3xСo3xO15−δ (х ≤ 0.005) can be crystallized in tetragonal syngony (sp. gr. P4 / mmm), as cobalt content increases, monoclinic distortion of the unit cell emerges at 0.005 < х ≤ 0.04. The solid solutions as well as cobalt oxides СoO, Co3O4 were studied by the NEXAFS spectroscopy. The analysis of the NEXAFS Co2p-spectra of cobalt-containing solid solutions and cobalt oxides revealed that the studied Co atoms were mainly in the +2 and +3 oxidation state. The isotherms of paramagnetic component of magnetic susceptibility of cobalt atoms in Bi5Nb3−3xCo3xO15−δ are typical for antiferromagnets. The effective magnetic moments of single cobalt atoms calculated by extrapolating concentration dependencies of [χpara(Co)] to infinite dilution of the solid solutions exceed pure-spin values and increase as the temperature increases from 6.18 μB (90 K) to 6.69 μB (320 K). The formation of exchange-bound aggregates of Сo(III) and Co(II) atoms predominantly with antiferromagnetic exchange types has been found in the solid solutions.

References (26)

1. G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya. Soviet Physics Solid State. 3, 651 (1961). (in Russian) [Г. А. Смоленский, В. А. Исупов, А. И. Аграновская. Физика твердого тела. 3, 651 (1961).].
2. V. A. Isupov. Ferroelectrics. 189, 211 (1996). Crossref
3. B. J. Macquart, B. J. Kennedy, T. Kamiyama, F. Izumi. J. Phys.-Condes. Matter. 16, 5443 (2004). Crossref
4. B. J. Kennedy, Q. Zhou, Ismunandar, Y. Kubota, K. Kato. J. Sol. St. Chem. 181, 1377 (2008). Crossref
5. R. Macquart, B. J. Kennedy, Y. Shimakawa. J. Sol. St. Chem. 160, 174 (2001). Crossref
6. C. H. Hervoches, P. Lightfoot. J. Sol. St. Chem. 153, 66 (2000). Crossref
7. Ismunandar, B. A. Hunter, B. J. Kennedy. Sol. St. Ion. 112, 281 (1998). Crossref
8. B. Aurivillius. Ark. Kemi. 54, 463 (1949).
9. Ismunandar, B. J. Kennedy, Gunawan, Marsongkohadi. J. Sol. St. Chem. 126, 135 (1996). Crossref
10. J. Gopalakrishnan, A. Ramanan, C. N. R. Rao, D. A. Jefferson D. A., Smith. J. Sol. St. Chem. 55, 101 (1984). Crossref
11. A. Lisinska-Czekaj. J. Eur. Ceram. Soc. 24, 947 (2004). Crossref
12. T. Takenaka, K. Komura, K. Sakata. Ferroelectrics. Jpn. J. Appl. Phys. 35, 5080 (1996). Crossref
13. S. Tahara, A. Shimada, N. Kumada, Y. Sugahara. J. Sol. St. Chem. 180, 2517 (2007). Crossref
14. P. Boullay, L. Palatinus, N. Barrier. Inorgan. Chem. 52, 6127 (2013). Crossref
15. L. Chen, W. Guo, Y. X. Yang, A. Zhang, S. Q. Zhang, Y. H. Guo, Y. N. Guo. Phys. Chem. Chem. Phys. 15, 8342 (2013). Crossref
16. O. Depablos-Rivera, J. C. Medina, M. Bizarro, A. Martínez, A. Zeinert, S. E. Rodil. J. Alloys Compd. 695, 3704 (2017). Crossref
17. G. Steciuk, N. Barrier, A. Pautrat, P. Boullay. Inorgan. Chem. 57, 3107 (2018). Crossref
18. L. G. Akselrud, Yu. N. Grin, P. Yu. Zavalij, V. K. Pecharsky, V. S. Fundamensky. Thes. Rep. XII Eur. Crystallographic. Meet. 3, 155 (1989).
19. J. Stöhr. NEXAFS Spectroscopy. Springer, Berlin (1992) 403 pp. Crossref
20. T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Luning, J. Stöhr, R. L. White. Phys. Rev. B. 64, 214422 (2001). Crossref
21. R. D. Shannon. Acta Crystallogr. А. 32, 751 (1976). Crossref
22. N. A. Sekushin, N. A. Zhuk, E. A. Belyaeva, et al. Letters on Materials. 7, 393 (2017). Crossref
23. N. V. Chezhina, D. A. Korolev, A. V. Fedorova, et al. Russ. J. Gen. Chem. 87, 373 (2017). Crossref
24. N. A. Zhuk, N. V. Chezhina, V. A. Belyy, et al. Letters on Materials. 7, 402 (2017). Crossref
25. Yu. V. Rakitin. Introduction to magnetochemistry. The method of static magnetic susceptibility in chemistry. Moscow, Nauka (1980) 302 pp. (in Russian) [Ю. В. Ракитин. Введение в магнетохимию. Метод статической магнитной восприимчивости в химии. Москва, Наука (1980) 302 с.].
26. N. V. Chezhina, E. V. Zharikova, M. N. Knyazev. Russ. J. Gen. Chem. 80, 2399 (2010). Crossref