Synthesis of the W2C-WC Composite by Electro-Thermal Explosion Under Pressure

V.T. Telepa, M.I. Alymov, V.A. Shcherbakov, A.V. Shcherbakov, V.I. Vershinnikov
Received: 07 November 2017; Revised: 08 February 2018; Accepted: 08 February 2018
This paper is written in Russian
Citation: V.T. Telepa, M.I. Alymov, V.A. Shcherbakov, A.V. Shcherbakov, V.I. Vershinnikov. Synthesis of the W2C-WC Composite by Electro-Thermal Explosion Under Pressure. Letters on Materials, 2018, 8(2) 119-122
BibTex   DOI: 10.22226/2410-3535-2018-2-119-122


Synthesized nanostructured WC by the method of electro-thermal explosion under pressure with a temperature above 3500 at a pressure of 20 and 96 MPa.Abstract. The WC–W2C composite was synthesized by means electro thermal explosion (ETE) under pressure. The method comprises preparing a mixture of tungsten and soot powders, cold pressing of the pellet and heating it with Joule heat until an exothermic synthesis reaction occurs under quasi-static compression conditionsStimulation of the process by electric current makes it possible to synthesize the composite and to consolidate it to a minimum residual porosity. The purpose was to synthesis the WC–W2C composite by ETE process of a tungsten and carbon black powders mixture under pressure. It was shown that in the synthesis the initial reagents were completely converted into the equilibrium final product contained 77.1 wt.% of WC and 22.9 wt.% of W2C. With increasing compression pressure up to 96 MPa, the maximum heating temperature of the target product by a combined heat source reached 3300 K. This temperature was below the melting point of tungsten (3695 K) but above the melting point of the target product (WC and W2C). The microstructure formation of the WC–W2C composite prepared under the conditions of ETE was studied. It was shown that the composite contains W2C particles of needles. The length of the particles exceeds 10 μm, and their average thickness is 45–100 nm. The WC–W2C composite has a density of 12.5 g/cm3 and Vickers microhardness of 16 GPa. The results obtained showed the ETE under pressure is promising for production of superhard composites.

References (15)

A. G. Merzhanov. Combustion processes and synthesis of materials. Chernogolovka, ISMAN (1998) 511 p. (in Russian) [А. Г. Мержанов. Процессы горения и синтез материалов. Черноголовка, ИСМАН (1998) 511 с.]
V. I. Yukhvid, V. A. Gorshkov, V. N. Borsh, P. A. Miloserdov, N. V. Sachkova, M. I. Alymov. Letters on Materials. 7(3), 332 (2017). (in Russian) [В. И. Юхвид, В. А. Горшков, В. Н. Борщ, П. А. Милосердов, Н. В. Сачкова, М. И. Алымов. Письма о материалах. 7(3), 332 (2017).] DOI: 10.22226/2410‑3535‑2017‑3‑332‑336
A. S. Shchukin, A. E. Sytschev. Letters on Materials. 7(3), 244 (2017). (in Russian) [А. С. Щукин, А. Е. Сычев. Письма о материалах. 7(3), 244 (2017).] DOI: 10.22226/2410‑3535‑2017‑3‑244‑248
A. S. Ustyukhin, A. V. Ankudinov, V. A. Zelenskiy, I. M. Milyaev, M. I. Alymov. Letters on Materials. 7(3), 249 (2017). (in Russian) [А. С. Устюхин, А. В. Анкудинов, В. А. Зеленский, И. М. Миляев, М. И. Алымов. Письма о материалах. 7(3), 249 (2017).] DOI: 10.22226/2410‑3535‑2017‑3‑249‑253
I. V. Saikov, M. I. Alymov, S. G. Vadchenko, I. D. Kovalev. Letters on Materials. 7(4), 465 (2017). (in Russian) [И. В. Сайков, М. И. Алымов, С. Г. Вадченко, И. Д. Ковалев. Письма о материалах. 7(4), 465 (2017).] DOI: 10.22226/2410‑3535‑2017‑4‑465‑468
V. T. Telepa, V. A. Shcherbakov, A. V. Shcherbakov. Letters on Materials. 6(4), 286 (2016). (in Russian) [В. Т. Телепа, В. А. Щербаков, А. В. Щербаков. Письма о материалах. 6(4), 286 (2016).] DOI: 10.22226/2410‑3535‑2016‑4‑286‑289
V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov, N. V. Sachkova. Letters on Materials. 6(3), 217 (2016). (in Russian) [В. А. Щербаков, А. Н. Грядунов, М. И. Алымов, Н. В. Сачкова. Письма о материалах. 6(3), 217 (2016).] DOI: 10.22226/2410‑3535‑2016‑3‑217‑220
V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov. Letters on Materials. 7(4), 398 (2017). (in Russian) [В. А. Щербаков, А. Н. Грядунов, М. И. Алымов. Письма о материалах. 7(4), 398 (2017).] DOI: 10.22226/2410‑3535‑2017‑4‑398‑401
A. S. Kurlov, I. A. Gusev. Advances in Chemistry. 75(7), 687 (2006). (in Russian) [А. С. Курлов, И. А. Гусев. Успехи химии. 75(7), 687 (2006).] DOI: 10.1002/chin.200701226
G. V. Samsonov, V. K. Vitryanyuk, F. I. Chaplygin. Carbidy volframa (Tungsten Carbides). Kiev, Naukova Dumka (1974) 176 p. (inRussian) [Г. В. Самсонов, В. К. Витрянюк, Ф. И. Чаплыгин. Карбиды вольфрама. Киев, Наукова думка (1974) 176 с.]
I. P. Borovinskaya, T. I. Ignatieva, V. I. Vershinnikov, O. M. Miloserdova, V. N. Semenova. Powder metallurgy. (9-10), 3 (2008). (in Russian) [И. П. Боровинская, Т. И. Игнатьева, В. И. Вершинников, О. М. Милосердова, В. Н. Семенова. Порошковая металлургия. (9-10), 3 (2008).] DOI: 10.1007/s11106‑008‑9051‑1
V. A. Shcherbakov, V. T. Telepa, A. V. Shcherbakov. Compos. Nanostr. 9(1), 70 (2016) (in Russian) [В. А. Щербаков, В. Т. Телепа, А. В. Щербаков. Композиты и наноструктуры. 9(1), 70 (2016).]
V. A. Shcherbakov, V. T. Telepa, A. V. Shcherbakov. Jnt. J. of Self-Propag High-Temp. Synth. 24(4), 251 (2015). (in Russian) [В. А. Щербаков, В. Т. Телепа, А. В. Щербаков. Международный журнал Самораспространяющийся высокотемпературный синтез. 24(4), 251 (2015).] DOI: 10.3103/S1061386215040111
GOST R ISO 6507-1 2007. Metals and alloys. Hardness testing Vickers. (in Russian) [ГОСТ Р ИСО 6507-1 – 2007. Металлы и сплавы. Измерение твердости по Виккерсу.]
GOST 25281-82. Powder metallurgy. Method of determination of formings density. (in Russian) [ГОСТ 25281-82. Металлургия порошковая. Методы определения плотности формовок.]