Preparation of the ZrB2–CrB composites by pressure-assisted electrothermal exploison

A.V. Shcherbakov, V.A. Shcherbakov, V.Y. Barinov show affiliations and emails
Received 09 October 2018; Accepted 13 December 2018;
This paper is written in Russian
Citation: A.V. Shcherbakov, V.A. Shcherbakov, V.Y. Barinov. Preparation of the ZrB2–CrB composites by pressure-assisted electrothermal exploison. Lett. Mater., 2019, 9(1) 39-44


Dependencies of temperature and rate of change electric current during at ETE at (Cr+B) content: 1) 90; 2) 80; 3) 70 % wt., obtained at P=96 MPa and U=11 V.The paper presents the results of studies on the preparation of composites ZrB2-CrB by the method of electrothermal explosion (ETE) in the conditions of quasi-isostatic compression. The sample under study was pressed from a mixture of zirconium, chromium and boron powders and heated to the burning point by a direct transmission of electric current. In this case, the thermal equilibrium is broken due to a heat release from the exothermic reaction of the synthesis of refractory compounds ZrB2 and CrB. Duration of ETE of the heterogeneous mixture is a few seconds. Under the influence of an external load, the hot product of ETE is consolidated and a dense SHS composite is formed. Adiabatic combustion temperature and equilibrium final product compositions are calculated on the basis of thermodynamic data. The dependence of the adiabatic combustion temperature on the composition and initial temperature is shown. The experimental dependences of the temperature of the test sample and the rate of change of the electric current during the ETE on the composition of the reaction mixture are presented. With an increase in the content of zirconium in the mixture, the time of pre-explosive heating and the rate of temperature growth in a thermal explosion increase, and the burning temperature and the maximum temperature of the ETE do not change. The conditions of the thermal explosion regime of the studied compositions are determined. When the content (Zr + 2B) in the mixture is more than 30 % wt., the Joule heating and thermal explosion of the sample does not occur due to the high dielectric permittivity of the oxide film on the surface of the zirconium particles. The phase composition and microstructure of SHS composites are studied. It is shown that in the course of exothermic synthesis an equilibrium product containing solid ZrB2 (dispersed phase) and molten CrB (ceramic bond) is formed. SHS-composites containing 70 – 90 % wt. of monoboride chrome are obtained.

References (25)

1. G. V. Samsonov, T. I. Serebryakova, V. A. Neronov. Borides. Moscow, Atomizdat (1975) 376 p. (in Russian) [Г. В. Самсонов, Т. И. Серебрякова, В. А. Неронов. Бориды. Москва, Атомиздат (1975) 376 c.].
2. A. G. Merzhanov. Combustion processes and synthesis of materials. Chernogolovka, ISMAN (1998) 512 p. (in Russian) [А. Г. Мержанов. Процессы горения и синтез материалов. Черноголовка, ИСМАН (1998) 512 с.].
3. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, J. A. Zaykoski. J. Am. Ceram. Soc. 95 (5), 1347 (2007). Crossref
4. E. A. Levashov, A. S. Rogachev, V. I. Yukhvid, I. P. Borovinskaya. Physico-chemical and technological bases of self-propagating high-temperature synthesis. Moscow, BINOM (1999) 175 p. (in Russian) [Е. А. Левашов, А. С. Рогачев, В. И. Юхвид, И. П. Боровинская. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза. Москва, БИНОМ (1999) 175 с.].
5. V. A. Shcherbakov, A. N. Gryadunov, Yu. N. Barinov, O. I. Botvina. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya. 1, 18 (2018). (in Russian) [Щербаков В. А, Грядунов А. Н., Баринов Ю. Н., Ботвина О. И. Известия вузов. Порошковая металлургия и функциональные покрытия. 1, 18 (2018).]. Crossref
6. V. A. Shcherbakov, A. N. Gryadunov, N. V. Sachkova, A. V. Samokhin. Letters on Materials. 5 (1), 20 (2015). (in Russian) [В. А. Щербаков, А. Н. Грядунов, Н. В. Сачкова, А. В. Самохин. Письма о материалах. 5 (1), 20 (2015).]. Crossref
7. A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas. J. Am. Ceram. Soc. 89 (2), 450 (2006). Crossref
8. A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas. J. Eur. Ceram. Soc. 29 (16), 3401 (2009). Crossref
9. S. Q. Guo et al. J. Am. Ceram. Soc. 91 (9), 2848 (2008). Crossref
10. A. V. Shcherbakov, V. Yu. Barinov, A. S. Shchukin, I. D. Kovalev, V. A. Shcherbakov, T. D. Malikina, A. I. Alhimenok. Fundamental research. 11 (2), 344 (2017). (in Russian) [А. В. Щербаков, В. Ю. Баринов, А. С. Щукин, И. Д. Ковалев, В. А. Щербаков, Т. Д. Маликина, А. И. Альхименок. Фундаментальные исследования. 11 (2), 344 (2017).].
11. A. A. Shiryaev. Int. J. of SHS. 4 (4), 351 (1995).
12. P. K. Liao, K. E. Spear. Bulletin of Alloy Phase Diagrams. 7 (3), 232 (1986). Crossref
13. J. M. Lonergan, W. G. Fahrenholtz, G. E. Hilmas. J. Am. Ceram. Soc. 97 (6), 1689 (2014). Crossref
14. L. Han et al. Appl. Phys. Lett. 106 (22), 221902 (2015). Crossref
15. H. L. Deng et al. Key Eng. Mat. 373 - 374, 35 (2008). Crossref
16. V. A. Shcherbakov, A. N. Gryadunov, A. S. Shteinberg. J. of Engineering Physics and Thermophysics. 63 (5), 1111 (1992). Crossref
17. K. I. Portnoi, V. M. Romashov, I. V. Romanovich. Powder Metallurgy and Metal Ceramics. 8 (4), 298 (1969). Crossref
18. V. A. Valtsifer, A. E. Stepanov. Combustion, Explosion, and Shock Waves. 25 (4), 65 (1989). (in Russian) [В. А. Вальцифер, А. Е. Степанов. ФГВ. 25 (4), 65 (1989).].
19. Yu. V. Frolov, A. N. Pivkina. Combustion, Explosion, and Shock Waves. 33 (5), 3 (1997). (in Russian) [Ю. В. Фролов, А. Н. Пивкина. ФГВ. 33 (5), 3 (1997).].
20. S. A. Rashkovskiy. Combustion, Explosion, and Shock Waves. 35 (5), 65 (1999). (in Russian) [С. А. Рашковский. ФГВ. 35 (5), 65 (1999).].
21. N. A. Kochetov, A. S. Rogachev, A. N. Emelyanov, E. V. Illarionova, V. M. Shkiro. Combustion, Explosion, and Shock Waves. 40 (5), 74 (2004). (in Russian) [Н. А. Кочетов, А. С. Рогачев, А. Н. Емельянов, Е. В. Илларионова, В. М. Шкиро. ФГВ. 40 (5), 74 (2004).].
22. R. Holm. Electric contacts. Moscow, Publishing house of foreign literature (1961) 464 p. (in Russian) [Р. Хольм.Электрические контакты. Москва, Изд. иностр. лит. (1961) 464 с.].
23. X. Liu et. al. Int. J. of Computer Aided Engineering and Technology. 1 (1), 94 (2008). Crossref
24. A. S. Klimov. Contact welding. Management issues and improve the stability of quality. Moscow, FIZMATLIT (2011) 216 p. (in Russian) [А. С. Климов. Контактная сварка. Вопросы управления и повышения стабильности качества. Москва, ФИЗМАТЛИТ (2011) 216 c.].
25. V. A. Shcherbakov, A. V. Shcherbakov, M. I. Alymov, V. Yu. Barinov, I. D. Kovalev, T. D. Malikina, A. I. Alhimenok. Fundamental research. 2, 39 (2017). (in Russian) [В. А. Щербаков, А. В. Щербаков, М. И. Алымов, В. Ю. Баринов, И. Д. Ковалев, Т. Д. Маликина, А. И. Альхименок. Фундаментальные исследования. 2, 39 (2018).].

Cited by (2)

A. V. Shcherbakov, A. E. Sychev. Combust Explos Shock Waves. 57(2), 196 (2021). Crossref
T. M. Vidyuk, M. A. Korchagin, D. V. Dudina, B. B. Bokhonov. Combust Explos Shock Waves. 57(4), 385 (2021). Crossref

Similar papers