Abstract
The paper presents an example of the simplest mathematical techniques to determine the maximum deformation of the free surface of an elastic body in contact with the non-deformable element. Considerable attention is given to the calculation in the position of a free surface. Since the model operates with an incompressible elastic medium, the displacement components completely satisfy the Laplace equation , for which the maximum principle holds , which is that the maximum (limit ) on the boundary deformation are achieved on the free surface , although the stresses on this site are minimal. This problem is important in the study of the processes of deformation of the contact surfaces of elements of different mechanisms , where the question of determining the limit of elastic deformation is structurally important.
material , mathematical modeling, potential displacement , iterative- difference technique .
References (3)
1. С.П. Демидов. Теория упругости. М.: Высшая школа. (1979) 340 с.
2. Х. Хан. Теория упругости. Основы линейной теории и ее применения. М.: Мир. (1988) 344 с.
3. А. Ляв. Математическая теория упругости. М.-Л.: Главная редакция общетехнической литературы и номографии. (1935) 674 с.