Impact of hard element on the free surface of an elastic material

M.A. Bubenchkov, A.I. Potekaev, A.M. Bubenchkov, A.V. Malozemov
Received: 15 April 2014; Accepted: 30 April 2014
This paper is written in Russian
Citation: M.A. Bubenchkov, A.I. Potekaev, A.M. Bubenchkov, A.V. Malozemov. Impact of hard element on the free surface of an elastic material. Letters on Materials, 2014, 4(1) 33-36
BibTex   DOI: 10.22226/2410-3535-2014-1-33-36

Abstract

The paper presents an example of the simplest mathematical techniques to determine the maximum deformation of the free surface of an elastic body in contact with the non-deformable element. Considerable attention is given to the calculation in the position of a free surface. Since the model operates with an incompressible elastic medium, the displacement components completely satisfy the Laplace equation , for which the maximum principle holds , which is that the maximum (limit ) on the boundary deformation are achieved on the free surface , although the stresses on this site are minimal. This problem is important in the study of the processes of deformation of the contact surfaces of elements of different mechanisms , where the question of determining the limit of elastic deformation is structurally important.
material , mathematical modeling, potential displacement , iterative- difference technique .

References (3)

1.
С.П. Демидов. Теория упругости. М.: Высшая школа. (1979) 340 с.
2.
Х. Хан. Теория упругости. Основы линейной теории и ее применения. М.: Мир. (1988) 344 с.
3.
А. Ляв. Математическая теория упругости. М.-Л.: Главная редакция общетехнической литературы и номографии. (1935) 674 с.