Phase-field modeling of changes in the grain structure of 316L steel obtained by cold spraying followed by laser treatment

M.S. Orlova, A.I. Gorunov show affiliations and emails
Received 30 November 2023; Accepted 13 February 2024;
Citation: M.S. Orlova, A.I. Gorunov. Phase-field modeling of changes in the grain structure of 316L steel obtained by cold spraying followed by laser treatment. Lett. Mater., 2024, 14(1) 79-84
BibTex   https://doi.org/10.48612/letters/2024-1-79-84

Abstract

The effect of laser thermal action on metal grains in 316L alloy obtained by supersonic laser deposition have been investigated. The treat by laser provide growth metal grains by diffusion. The results of experimental studies correlate with the results of process modeling.The work is devoted to the study of the grain structure of alloy 316L, obtained by supersonic laser deposition. The purpose of this paper is to study the formation of the grain structure of the metal obtained by cold spraying method and treated by laser. Recrystallization processes are simulated using the phase field method. The effect of a concentrated energy source on the grain structure of the metal was described by the non-stationary Allen-Kahn and Kahn-Hilliard equations. The simulation results showed that during the thermal action of the laser, the grains diffused and increased in size. The regularity of grain growth in the direction of the current temperature gradient was also found. The simulation results were confirmed by the results of several experiments conducted to verify them.

References (22)

1. W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, R. Lupoi. J. of Mater. Sci. and Tech. 34 (3), 440 (2018).
2. S. Bagherifard, S. Monti, M. V. Zuccoli, M. Riccio, J. Kondas, M. Guagliano. Mater. Sci. and Engin.: A. 721, 339 (2018).
3. Z. Wang, C. Han, H. Guosheng, B. Han. Rapid Prototyping J. 28 (2), 330 (2022).
4. M. Bray, A. Cockburn, W. O’Neill. Surface and Coating Technology. 203 (19), 2851 (2011).
5. B. Li, Z. Li, L. Yang, J. Yao. Paton Weld. J. 8, 35 (2016).
6. S. Wang, L. Cui, G. Liu, J. Hao, X. Wang, E. Hao. Surf. and Coat. Tech. 453, 129142 (2023).
7. A. I. Gorunov. J. of Therm Spray Tech. 27, 1194 (2018).
8. A. I. Gorunov. J. of Manufact. Proc. 56, 746 (2020).
9. Q. Zhang, L. Wu, H. Zou, B. Li, G. Zhang, J. Sun, J. Wang, J. Yao. J. of Alloys and Compounds. 860, 158417 (2021).
10. J. H. Yao, L. J. Yang, B. Li, Z. H. Li. Mater. and Design. 83, 26 (2015).
11. J. Yao, Z. Li, B. Li, L. Yang. J. of Alloys and Compounds. 661, 526 (2016).
14. K. Chong, Y. Zou, D. Wu, Y. Tang, Y. Zhang. Surf. and Coat. Tech. 418, 127258 (2021).
15. M. Yang, L. Wang, W. Yan. Npj Comput. Mater. 7 (1), 56 (2021).
16. N. Cusato, S. A. Nabavizadeh, M. Eshraghi. Metals. 13 (7), 1169 (2023).
17. T. Takaki. ISIJ International. 54 (2), 437 (2014).
18. Y. U. Wang. Acta Mater. 54 (4), 953 (2006).
19. X. Wang, Y. Liu, L. Li, C. O. Yenusah, Y. Xiao, L. Chen. Mater. and Design. 203 (10), 109615 (2021).
20. S. Yin, R. Jenkins, X. Yan, R. Lupoi. Mater. Sci. and Engin.: A. 734, 67 (2018).
21. A. Javed, C. Pradeep, P. Deepankar, S. Brent. Additive Manufacturing. 21, 255 (2021).
22. X. X. Yao, X. Gao, Z. Zhang. Additive Manufacturing. 20, 934 (2022).

Similar papers

Funding

1. Russian Science Foundation - 23-29-00219