Application of inverse analysis for a determination of material rheological constants basing on forming tests of circular membranes

I. Zakhariev, S. Aksenov, I. Logashina show affiliations and emails
Received  18 November 2016; Accepted  27 February 2017
This paper is written in Russian
Citation: I. Zakhariev, S. Aksenov, I. Logashina. Application of inverse analysis for a determination of material rheological constants basing on forming tests of circular membranes. Lett. Mater., 2017, 7(1) 49-54
BibTex   https://doi.org/10.22226/2410-3535-2017-1-49-54

Abstract

The paper is devoted to a problem of determining rheological characteristics of materials from the results of experiments on free forming of sheet blanks to a cylindrical matrix. This information on the material behavior is used in the design of gas forming processes for the production of parts for aerospace industry. Realization of such technologies requires to follow optimum technological regimes, in computer simulations of which one should adequately describe the properties of materials under consideration. A significant disadvantage of the classical experimental method of tensile testing of plate specimens is that an information taken from these tests is related to metal forming in the conditions of uniaxial tension that is not typical for gas forming processes. Experimental method of forming circular membranes considered here allows one to study the behavior of a material in the conditions of biaxial tension. Interpretation of the results is proposed to carry out by an inverse analysis utilizing a special semianalytical model for the solution of the direct task. The key role in this semianalytical model belongs to a dependence of the blank thickness at the dome pole on the dome height, which accounts for the strain rate sensitivity coefficient. This approach was applied for the processing of experimental results obtained by free forming of industrial aluminum alloys. The material characteristics obtained were compared to charecteristics determined by other methods for the same set of experimental data available in the literature. To estimate the efficiency of the method proposed, the characteristics obtained were verified by finite element simulations. For simulations, MSC Nastran software was used. The results of the simulations were found to be in good agreement with the experimental data not only with respect to the dome height but also to the blank thickness at the dome.

References (22)

1. E. N. Chumachenko I. V. Logashina, I. Y. Zakhariev, Metallurgist, Pages 1 - 6 (2016) (in Russian) [Е. Н. Чумаченко, И. В. Логашина, И. Ю. Захарьев Металлург. 2016. № 4. С. 102 - 105.]. Crossref
2. E. Chumachenko, E. Smirnov, M. Tsepin Superplasticity:Materials, theory, technology. -M. publishing house “Librikom” (2009) 320p. (in Russian) [Чумаченко Е. Н., Смирнов О. М., Цепин М. А.// М. Сверхпластичность: Материалы, теория, технологии. - М.: книжный дом “Либроком” 2009. 320с.].
3. W. A. Backofen, I. R. Turner, D. H. Avery. Trans. ASM 57 (4), pp. 980 - 990. (1964).
4. J. Hedworth, M. J. Stowell. Journal of materials science 6 pp. 1061 - 1069. (1971).
5. Hart E. W., Theory of tensile test // Acta Metall. 15, pp. 351 - 353. (1967).
6. T. Zagirov, A. Kruglov, F Enikeev. Industrial laboratory. Materials diagnostics. 9, 76, (2010) (in Russian) [Загиров Т. М., Круглов А. А., Еникеев Ф. У., “Заводская лаборатория. Диагностика материалов” № 9. Том 76 (2010)].
7. D. M. Woo. Int. J. Mech. Sci. 6, pp. 303 - 317 (1964).
8. M. Albakri, F. Abu-Farha, M. Khraisheh, // Int. J. Mech. Sci. 66. pp. 55 - 66. (2013).
9. E. M. Taleff, L. G. Jr. Hector, R. Verma, P. E. Krajewski, J. K. Chang, Journal of Materials Engineering and Performance. 19 (4). pp. 488 - 494. (2010).
10. S. A. Aksenov, A. V. Kolesnikov, A. V. Mikhaylovskaya, Journal of Materials Processing Technology. 237. pp. 88 - 95. (2016). Crossref
11. F. U. Enikeev, A. A. Kruglov, Int. J. Mech. Sci. 37. pp. 473 - 483. (1995).
12. G. Giuliano, S. Franchitti, International Journal of Machine Tools & Manufacture. 47. pp. 471 - 476. (2007).
13. G. Giuliano, Materials and Design. 29. pp. 1330 - 1333. (2008).
14. G. Giuliano, S. Franchitti, International Journal of Machine Tools & Manufacture. 48. pp. 1519 - 1522 (2008).
15. Joon-Tae, Jong-Hoon, Ho-Sung Lee, Sung-Kie Youn, Journal of Mechanical Science and Technology. 26 (7). pp. 2101 - 2105 (2012).
16. F. Enikeev, O. Tulupova, V. Ganieva. Forging and Stamping Production. Material Working by Pressure 11, pp. 7 - 11, (2015) (in Russian) [Еникеев Ф. У., Тулупова О. П., Ганиева В. Р., «Кузнечно-штамповочное производство. Обработка материалов давлением». 11. С. 7 - 11. (2015)].
17. D. Sorgente, L. Tricarico, International Journal of Material Forming. 7. pp. 179 - 187. (2014).
18. G. Y. Li, M. J. Tan, K. M. Liew, J. Mater. Process. Technol. Vol.150. pp. 76 - 83. (2004).
19. S. A. Aksenov, E. N. Chumachenko, A. V. Kolesnikov, S. A. Osipov, Journal of Materials Processing Technology. 217. pp. 158 - 164. (2015).
20. J. R. Bradley, Bulge Testing of Superplastic AA5083 Aluminum Sheet in: E. M. Taleff, P. A. Friedman, P. E. Krajewski, R. S. Mishra, J. G. Schroth (Eds.) Advances in Superplasticity and Superplastic Forming. The Minerals, Metals & Materials Society (TMS), Charlotte, North Carolina, USA. 2004. pp. 109 - 118.
21. F. Jovane, Int. J. Mech. Sci. 10. pp. 403 - 424. (1968).
22. S. Yu-Quan, Z. Jun, Mater. Sci. Eng. 84. pp. 111 - 125. (1986).

Cited by (1)

1.
O. Tulupova, C. Gumerova, V. Ganieva, A. Kruglov, F. Enikeev. Lett. Mater. 12(2), 142 (2022). Crossref

Similar papers