The study of antifriction aluminum alloys, containing iron, before and after tribological tests

O.O. Shcherbakova, T.I. Muravyeva, D.L. Zagorskiy
Received: 20 November 2017; Revised: 14 February 2018; Accepted: 14 February 2018
This paper is written in Russian
Citation: O.O. Shcherbakova, T.I. Muravyeva, D.L. Zagorskiy. The study of antifriction aluminum alloys, containing iron, before and after tribological tests. Letters on Materials, 2018, 8(2) 123-128
BibTex   DOI: 10.22226/2410-3535-2018-2-123-128


In this work, a study was made of changes in the surface and near-surface layers of the material during friction to assess the effect of the composition and structure of the antifriction iron-containing aluminum alloy on its tribological properties.Experimental aluminum alloys with the addition of iron, which model the materials obtained with the addition of recyclables, were investigated. The use of the recyclable (silumin waste, production waste, remelting of canned scrap, etc.) seems to be promising for the national economy. In the work, the alloy of the Al-6% Sn-5% Si-4% Cu (mass. %) system was used as a base, to which iron ( 1%) and other elements (bismuth, lead, manganese) were added. The samples under investigation were subjected to heat treatment: heating (up to 500 ° C) and cooling in various regimes. It was shown that the best results are achieved with cooling in water: the phases are spheroidized and improve properties. Complex method of microscopy, including optical, electronic (with X-ray spectral microanalysis), and probe microscopy. was used, in order to study alloys before and after tribological tests . An investigation of the initial structure of the samples showed that the combined addition of iron with manganese (0.5%) leads to the formation of favorable skeletal phases. The tribological tests without lubrication which modeled the extreme conditions of operation were carried out. These experiments showed that the investigated alloy has an increased wear resistance, which can be associated with the formation of skeletal phases. After tribological tests, significant changes in the structure and phase components at the surface and in the near-surface layer were observed. For the study of this layer, an oblique cut was made, on which near-surface area with a thickness of 50-100 μm was detected.

References (19)

B. N. Arzamasov, T. V. Soloveva, S. A. Gerasimov i dr. Spravochnik po konstrukcyonnym materialam: Spravochnik. Moscow, МGТU (2005) 640 p. (in Russian) [Б. Н. Арзамасов, Т. В. Соловьёва, С. А. Герасимов и др. Справочник по конструкционным материалам: Справочник. Москва, МГТУ (2005) 640 с.]
B. S. Ünlü, E. Atik. Materials and Design. 30, 1381 (2009). DOI: 10.1016/j.matdes.2008.06.069
D. E. Sander, H. Allmaier, H. H. Priebsch, F. M. Reich, M. Witt, T. Füllenbach, A. Skiadas, L. Brouwer, H. Schwarze. Tribology International. 81, 29 (2015). DOI: 10.1016/j.triboint.2014.07.021
A. E. Mironov, I. S. Gershman, A. V. Ovechkin, E. I. Gershman. Journal of friction and wear. 1(37), 31 (2016). (in Russian) [А. Е. Миронов, И. С. Гершман, А. В. Овечкин, Е. И. Гершман. Трение и износ. 1(37), 31 (2016).] DOI: 10.3103/S1068366616010128
A. E. Mironov, I. S. Gershman, A. V. Ovechkin, E. I. Gershman. Journal of friction and wear. 3(36), 334 (2015). (in Russian) [А. Е. Миронов, И. С. Гершман, А. В. Овечкин, Е. И. Гершман. Трение и износ. 3(36), 334 (2015).] DOI: 10.3103/S1068366615030095
Patent RF № 2571665. (in Russian) [Патент РФ № 2571665.]
A. E. Mironov, I. S. Gershman, E. I. Gershman, M. M. Zheleznov. Journal of friction and wear. 2(38), 67 (2017). (in Russian) [А. Е. Миронов, И. С. Гершман, Е. И. Гершман, М. М. Железнов. Трение и износ. 2(38), 67 (2017).] DOI: 10.3103/S1068366617020155
E. Feyzullahoğlu, N. Şakiroğlu. Materials and Design. 31, 2532 (2010). DOI: 10.1016/j.matdes.2009.11.037
D. E. Lozanoa, R. D. Mercado-Solisa, A. J. Pereza, J. Talamantesb, F. Morales, M. A. L. Hernandez-Rodriguez. Wear. 267, 545 (2009). DOI: 10.1016/j.wear.2008.12.112
R. A. Al-Samarai, K. R. A. Haftirman, Y. Al-Douri. Procedia Engineering. 53, 616 (2013). DOI: 10.1016/j.proeng.2013.02.079
X. Wanga, M. Nie, C. T. Wang, S. C. Wang, N. Gao. Materials & Design. 83, 193 (2015). DOI: 10.1016/j.matdes.2015.06.018
N. A. Bushe, I. G. Goryacheva, R. A. Korneev. Izvestiya VUZov. Severo-Kavkazskiy region. Tekhnicheskie nauki. Specvypusk, 35 (2001). (in Russian) [Н. А. Буше, И. Г. Горячева, Р. А. Корнеев. Известия ВУЗов. Северо-Кавказский регион. Технические науки. Спецвыпуск, 35 (2001).]
N. A. Belov, A. O. Mikhailina, A. N. Alabin, O. O. Stolyarova. Metal Science and Heat Treatment. 3(58), 195 (2016). (in Russian) [Н. А. Белов, А. О. Михайлина, А. Н. Алабин, О. О. Столярова. МиТОМ. 4, 11 (2016).] DOI: 10.1007/s11041‑016‑9988‑5
N. A. Belov, O. O. Stolyarova, T. I. Muraveva, D. L. Zagorskiy. The Physics of Metals and Metallography. 6(117), 579 (2016). (in Russian) [Н. А. Белов, О. О. Столярова, Т. И. Муравьева, Д. Л. Загорский. ФММ. 6(117), 600 (2016).] DOI: 10.1134/S0031918X16040025
B. Y. Sachek, A. M. Mezrin, T. I. Muravyeva, O. O. Stolyarova, D. L. Zagorskiy, N. A. Belov. Journal of Friction and Wear. 2(36), 103 (2015). (in Russian) [Б. Я. Сачек, А. М. Мезрин, Т. И. Муравьёва, О. О. Столярова, Д. Л. Загорский, Н. А. Белов. Трение и износ. 2(36), 137 (2015).] DOI: 10.3103/S1068366615020142
V. S. Zolotorevskiy, N. A. Belov. Metallovedenie liteinyh aluminievyh splavov. Moscow, МISiS (2005) 375 p. (in Russian) [В. С. Золоторевский, Н. А. Белов. Металловедение литейных алюминиевых сплавов. Москва, МИСиС (2005) 375 с.]
I. I. Novikov, V. S. Zolotorevskiy, K. K. Portnoy, N. A. Belov i dr. Metallovedenie: Uchebnik. Мoscow, МISiS (2009) 528 p. (in Russian) [И. И. Новиков, В. С. Золоторевский, К. К. Портной, Н. А. Белов и др. Металловедение: Учебник. Москва, МИСиС (2009) 528 с.]
O. O. Stolyarova, T. I. Muravyeva, D. L. Zagorskiy, N. A. Belov. Physical mesomechanics. 5(19), 104 (2016). (in Russian) [О. О. Столярова, Т. И. Муравьева, Д. Л. Загорский, Н. А. Белов. Физическая мезомеханика. 5(19), 104 (2016).]
N. A. Belov i dr. Aluminievye splavy antifrikcionnogo naznacheniya: A45 monogr. Moscow, МISiS (2016) 222 p. (in Russian) [Н. А. Белов и др. Алюминиевые сплавы антифрикционного назначения: A45 моногр. Москва, МИСиС (2016) 222 с.]