Thermal properties of nanocrystalline copper sulfides KxCu1.85S (0 < x < 0.05)

K.A. Kuterbekov, M.K. Balapanov, M.M. Kubenova, R.S. Palymbetov, R.K. Ishembetov, S.M. Sakhabayeva ORCID logo , A.M. Kabyshev, B.M. Akhmetgaliev, K.Z. Bekmyrza, Y.T. Abseitov, S.G. Giniyatova show affiliations and emails
Received 10 February 2022; Accepted 06 June 2022;
Citation: K.A. Kuterbekov, M.K. Balapanov, M.M. Kubenova, R.S. Palymbetov, R.K. Ishembetov, S.M. Sakhabayeva, A.M. Kabyshev, B.M. Akhmetgaliev, K.Z. Bekmyrza, Y.T. Abseitov, S.G. Giniyatova. Thermal properties of nanocrystalline copper sulfides KxCu1.85S (0 < x < 0.05). Lett. Mater., 2022, 12(3) 191-196
BibTex   https://doi.org/10.22226/2410-3535-2022-3-191-196

Abstract

Thermoelectric materials are designed according to thermoelectric characteristics, which require good agreement with the Zeebeck coefficient, electronic conductivity, and thermal conductivity. This paper is presented the comparative data of thermal properties in five compounds of nanocrystalline copper sulfides KxCu1.85S (0<x <0.05) at the temperature zone from 300 K to 700 K. X-ray phase analysis shows a mixture different phases of copper sulfides such as Сu1.85S cubic phase, Cu2S cubic phase, Cu17S9 (Cu1.89S) rhombohedral phase, Cu2S tetragonal phase  in all investigated compounds at room temperature. The sizes of crystallites in the alloys estimated from half-width of X-ray lines are in range from 24 to 90 nm. The thermal conductivity of alloys decreases to 0.2 ÷ 0.6 W K-1m-1 in temperature range of 350 – 700 K due to increasing of the amount of potassium (for x = 0.04, 0.05). This guides the maximum thermoelectric characteristics of the material. The obtained results are important for semiconductor materials used in the field of thermoelectric devices.This paper presents the comparative data on thermal properties of five compounds of nanocrystalline copper sulfides KxCu1.85S (0 < x < 0.05) at the temperature range from 300 to 700 K. X-ray phase analysis shows that Cu31S16 (or Cu1.9375S) monoclinic djurleite phase are found as prevailing in all KxCu1.85S samples (0.01< x < 0.05). Also in all samples there are oxygen oxide Cu2O and orthorhombic anilite Cu7S4 (Cu1.75S). Variable components of the alloys are monoclinic and hexagonal chalcocite, triclinic roxbyite. The sizes of crystallites in the alloys estimated from half-width of X-ray lines are in the range from 11 to 265 nm at room temperature. Differential scanning calorimetry revealed considerable endothermic thermal effect in the temperature range from 370 to 375 K for all compounds, obviously caused by the superionic phase transition from monoclinic djurleite to hexagonal chalcocite. The thermal conductivity of alloys decreases to 0.16 ÷ 0.25 W K−1m−1 in the temperature range of 450 – 600 K due to an increase in the amount of potassium (for x = 0.04, 0.05). This favors the achievement of high thermoelectric figure of merit of the material. The obtained results are important for semiconductor materials used in the field of thermoelectric devices.

References (30)

1. J. G. Snyder, E. S. Toberer. Nature materials. 7, 105 (2008). Crossref
2. O. Caballero-Calero, J. R. Ares, M. Martin-González. Adv. Sustainable Syst. 5(11), 2100095 (2021). Crossref
3. Y. Ma, Q. Hao, B. Poudel, Yu. Lan, B. Yu, D. Wang, G. Chen, Zh. Ren. Nano Lett. 8 (8), 2580 (2008). Crossref
4. CRC Handbook of Thermoelectrics (Ed. by D. M. Rowe). CRC Press, Boca Raton, FL (1995).
5. H. J. Goldsmid. Thermoelectric Refrigeration. Plenum Press, New York (1964). Crossref
6. Semiconductors and Semimetals (Ed. by T. M. Tritt). Academic Press, San Diego, CA (2001).
7. D. Beretta, N. Neophytou, J. M. Hodges, M. G. Kanatzidis, D. Narducci, M. Martin-Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink, A. I. Hofmann, C. Müller, B. Dörling, M. Campoy-Quiles, M. Caironi. Mater. Sci. Eng. R. 138, 100501 (2019). Crossref
8. G. Guelou et al. J. Mater. Chem. C. 9, 773 (2021). Crossref
9. W.-D. Liu, L. Yang, Z.-.G. Chen, J. Zou. Adv. Mater. 32, 1905703 (2020). Crossref
10. T. Wang, T. Guo, H. Wang, C. Wang, Sci. China Mater. 63, 8 (2020). Crossref
11. C. Ou, A. L. Sangle, A. Datta, Q. Jing, T. Busolo, T. Chalkley, V. Narayan, S. Kar-Narayan. ACS Appl. Mater. Interfaces. 10, 19580 (2018). Crossref
12. K. Kanahashi, J. Pu, T. Takenobu. Adv. Energy Meter. 10, 1902842 (2020). Crossref
13. N. Jaziri, et al. Energy Rep. 6, 264 (2020). Crossref
14. J. Yan, X. Liao, D. Yan, Y. Chen. J. Microelectromech. Syst. 27, 1 (2018). Crossref
15. P. Qiu, Y. Zhu, Y. Qin, X. Shi, L. Chen. APL Mater. 4 (10), 104805 (2016). Crossref
16. M. M. Kubenova, K. A. Kuterbekov, M. Kh. Balapanov, R. Kh. Ishembetov, A. M. Kabyshev, K. Zh. Bekmyrza. Nanomaterials. 11, 2238 (2021). Crossref
17. X. Li, C. Hu, X. Kang, Q. Len, Y. Xi, K. Zhang, H. J. Mater. Chem. A. 1, 13721 (2013). Crossref
18. M. H. Balapanov, R. H. Ishembetov, B. M. Ahmetgaliev, K. A. Kuterbekov, R. SH. Palymbetov, S. M. Sahabaeva, R. A. Yakshibaev. Vestnik Bashkirskogo universiteta. 25, 794 (2020). Crossref
19. M. Kh. Balapanov, R. Kh. Ishembetov, K. A. Kuterbekov, A. Kh. Baisheva, R. Sh. Palymbetov, S. M. Sakhabaeva, M. M. Kubenova, R. A. Yakshibaev. Letters on materials. 10 (4), 439 (2020). (in Russian) [М.Х. Балапанов, Р.Х. Ишембетов, К.А. Кутербеков, А.Х. Баишева, Р.Ш. Палымбетов, С. Сахабаева, М.М. Кубенова, Р.А. Якшибаев. Письма о материалах. 10 (4), 439 (2020).]. Crossref
20. E. H. Roseboom. Econ. Geol. 61, 641 (1966). Crossref
21. S.-C. Ur, I.-H. Kim, P. Nash. J. Mater. Sci. 42, 2143 (2007). Crossref
22. M. H. Balapanov, R. H. Ishembetov, B. M. Ahmetgaliev, K. A. Kuterbekov, R. Sh. Palymbetov, S. M. Sahabaeva, R. A. YAkshibaev, M. M. Kubenova. Sbornik trudov V Mezhdunar. nauch.-prakt. konf. Respublika Bashkortostan, Sterlitamak (2021) pp 34 - 40.
23. D. J. Chakrabarti, D. E. Laughlin. Phase Equilibria. 4 (3), 254 (1983). Crossref
24. J. B. Rivest, L.-K. Fong, P. K. Jain, M. F. Toney, A. P. Alivisatos. J. Phys. Chem. Lett. 2, 2402 (2011). Crossref
25. J. Gong, P. K. Jain. Nature commun. 10, 3285 (2019). Crossref
26. S. M. Sakhabayeva, M. Kh. Balapanov, K. A. Kuterbekov, R. Kh. Ishembetov, M. M. Kubenova, Sh. G. Giniyatova, S. A. Nurkenov, B. M. Akhmetgaliev, M. Kh. Zeleev, R. A. Yakshibaev, G. S. Seisenbayeva. Eurasian Journal of Physics and Functional Materials. 6 (1), 71 (2022). Crossref
27. S. M. Kauzlarich, Sh. R. Brown, G. J. Snyder. Dalton Trans. 21, 2099 (2007). Crossref
28. P. Qiu, X. Shi, L. Chen. Energy Storage Materials. 85 (3), 85 (2016). Crossref
29. H. L. Liu, X. Shi, F. F. Xu, L. L. Zhang, W. Q. Zhang, L. D. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder. Nat. Mater. 11 (5), 422 (2012). Crossref
30. S. M. Sakhabayeva, M. Kh. Balapanov, K. A. Kuterbekov, Sh. G. Giniyatova, M. M. Kubenova, R. Sh. Palymbetov, R. H. Ishembetov, Y. H. Yulaeva. Recent Contibutions to Physics. 79 (4), 72 (2021). Crossref

Similar papers

Funding

1. Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan - AP08856636