Study of thermal properties of biodegradable composite materials based on recycled polypropylene

R. Salikhov, M. Bazunova, A. Bazunova, T. Salikhov, V. Zakharov show affiliations and emails
Received 19 October 2018; Accepted 14 November 2018;
Citation: R. Salikhov, M. Bazunova, A. Bazunova, T. Salikhov, V. Zakharov. Study of thermal properties of biodegradable composite materials based on recycled polypropylene. Lett. Mater., 2018, 8(4) 485-488
BibTex   https://doi.org/10.22226/2410-3535-2018-4-485-488

Abstract

Adding natural fillers of plant origin to composites based on recycled polypropylene gradually increases the thermal conductivity coefficient with increasing filler content.Recently, the development of modern technology for producing biodegradable polymers is one of the most topical issues. Filling the polymer with natural components increases the interfacial contact boundary, through which moisture and aggressive chemicals can penetrate into the material, which accelerates the decomposition of the composite in natural conditions. This study is devoted to the study of the thermophysical properties of biodegradable composite materials based on recycled polypropylene with various natural fillers of plant origin. In this work, we measured the thermal conductivity and resistivity depending on temperature, filler concentration and residence time in the recovered soil in which the samples were biodegraded, shows the relationship between the change in thermal conductivity and resistivity of the studied samples and proposed preliminary conclusions about the mechanisms of thermal conductivity of the materials considered. Adding natural fillers of plant origin to composites based on recycled polypropylene gradually increases the thermal conductivity coefficient with increasing filler content. In this case, the resistivity decreases, and, with an increase in the content of the filler, this decrease becomes more significant. This means that with an increase in conductivity, the coefficient of thermal conductivity also increases, which is typical for materials in which charge transfer occurs at the expense of electrons. As a result of destruction under the influence of the environment, the thermal conductivity of the samples decreases, and the change is most significant for samples with a high content of filler.

References (22)

1. V. K. Kryzhanovsky, V. V. Burlov, Yu. V. Panimatchenko, Yu. V. Kryzhanovskaya. Technical properties of polymeric materials: Uch.-sprav. pos. Saint Petersburg, Publishing house "Profession" (2003) 240 p. (in Russian) [В. К. Крыжановский, В. В. Бурлов, Ю. В. Паниматченко, Ю. В. Крыжановская. Технические свойства полимерных материалов: Уч.-справ. пос. Санкт-Петербург, Изд-во «Профессия» (2003) 240 с.].
2. A. Shan, F. Hasan, A. Hameed, et al. Biotechnol Fdv. 26, 246 (2008).
3. V. A. Fomin, V. V. Guzeev. Plastics. 2, 42 (2001). (in Russian) [В. А. Фомин, В. В. Гузеев. Пластические массы. 2, 42 (2001).].
4. S. Z. Rogovina. Polymer Science, Series C. 58, 62 (2016).
5. E. E. Mastalygina, N. N. Kolesnikova, A. A. Popov. Prospective materials. 9, 39 (2015). (in Russian) [Е. Е. Масталыгина, Н. Н. Колесникова, А. А. Попов. Перспективные материалы. 9, 39 (2015).].
6. Е. Е. Mastalygina, O. V. Shatalov, N. N. Kolesnikova, A. A. Popov, А. V. Krivandin. Inorganic Materials: Applied Research. 7(1), 58 (2016).
7. M. V. Bazunova, R. B. Salikhov, A. R. Sadritdinov, V. V. Chernova, V. P. Zakharov. Journal of Pharmaceutical Sciences and Research. 10(2), 288 (2018).
8. D. G. Dikobe. Express Polym Lett. 4(11), 729 (2010).
9. M. Rutkowska, A. Heimowska, K. Krasowska, et al. Polish Journal of Enviromental science. 11(3), 267 (2002).
10. A. N. Filonov, N. V. Maksimova, I. N. Knir, E. A. Mayer. Plastic masses. 5, 30 (2004). (in Russian) [А. Н. Филонов, Н. В. Максимова, И. Н. Кнырь, Э. А. Майер. Пластические массы. 5, 30 (2004).].
11. V. G. Makarov, V. B. Koptenarmusov. Industrial thermoplastics: Handbook. Moscow, ANO Publishing House Chemistry, Kolos Publishing House (2003) 208 p. (in Russian) [В. Г. Макаров, В. Б. Коптенармусов. Промышленные термопласты: Справочник. Москва, АНО «Издательство Химия», «Издательство Колос» (2003) 208 с.].
12. Yu. S. Lipatov. Physical and chemical bases of filling polymers. Moscow, Chemistry (1991) 245 p. (in Russian) [Ю. С. Липатов. Физико-химические основы наполнения полимеров. Москва, Химия (1991) 245 с.].
13. M. V. Bazunova, V. V. Chernova, R. B. Salikhov, E. I. Kulish, V. P. Zakharov. Bulletin of the Bashkir University. 23(1) 70 (2018). (in Russian) [М. В. Базунова, В. В. Чернова, Р. Б. Салихов, Е. И. Кулиш, В. П. Захаров. Бюллетень Башкирского университета. 23(1) 70 (2018).].
14. M. V. Bazunova, A. S. Vasyukova, R. B. Salikhov, V. P. Zakharov. Bulletin of the Technological University. 21(7), 37 (2018). (in Russian) [М. В. Базунова, А. С. Васюкова, Р. Б. Салихов, В. П. Захаров. Бюллетень Технологического университета. 21(7), 37 (2018).].
15. N. N. Teryaeva, O. V. Kasyanovva, T. V. Lopatkina. Bulletin of the Kuzbass State Technical University. 4(1), 69 (2005). (in Russian) [Т. Н. Теряева, О. В. Касьянова, Т. В. Лопаткина. Вестник Кузбасского государственного технического университета. 4(1), 69 (2005).].
16. Y. K. Godovsky. Thermal physics of polymers. Moscow, Chemistry (1982) 280 p. (in Russian) [Ю. К. Годовский. Теплофизика полимеров. Москва, Химия (1982) 280 c.].
17. H. Essabir, E. Hilali, A. Elgharad, et al. Mater Design. 49, 442 (2013).
18. R. B. Salikhov, T. R. Salikhov. Letters on Materials. 5(4), 442 (2015).
19. M. F. Galikhanov, D. A. Eremeev, R. Y. Deberdeev. Russian Journal of Appl. Chem. 10, 1651 (2003).
20. V. G. Shevchenko. Fundamentals of Physics of Polymer Composite Materials. Moscow, MGU (2010) 99 p. (in Russian) [В. Г. Шевченко. Основы физики полимерных композиционных материалов. Москва, МГУ (2010) 99 с.].
21. M. I. Shtilman. Journal of Siberian Federal University. Biology. 8(2), 113 (2015).
22. E. A. Kuznetsov. Applied ecobiotechnology. Moscow, Binom, Laboratory of Knowledge (2012) 629 p. (in Russian) [Е. А. Кузнецов. Прикладная экобиотехнология. Москва, Бином, Лаборатория знаний (2012) 629 с.].

Cited by (4)

1.
A. Sadritdinov, E. Zakharova, A. Khusnullin, V. Zakharov. Lett. Mater. 10(4), 404 (2020). Crossref
2.
A. R. Sadritdinov, A. B. Glazyrin, A. A. Psyanchin, E. M. Zakharova, A. G. Khusnullin, V. P. Zakharov. Plasticeskie massy. , 46 (2021). Crossref
3.
M. Bazunova, R. Salikhov, V. Zaharov. Lett. Mater. 11(4), 397 (2021). Crossref
4.
A. Khusnullin, E. Zakharova, A. Psyanchin, V. Zakharov. Lett. Mater. 12(1), 59 (2022). Crossref

Similar papers