Heat-conducting properties of thermobarically-sintered detonation nanodiamond

V.A. Plotnikov ORCID logo , D.G. Bogdanov, A.S. Bogdanov, A.A. Chepurov, S.V. Makarov ORCID logo , A.P. Yelisseyev, E.I. Zhimulev, V.G. Vins ORCID logo show affiliations and emails
Received 27 June 2022; Accepted 19 September 2022;
Citation: V.A. Plotnikov, D.G. Bogdanov, A.S. Bogdanov, A.A. Chepurov, S.V. Makarov, A.P. Yelisseyev, E.I. Zhimulev, V.G. Vins. Heat-conducting properties of thermobarically-sintered detonation nanodiamond. Lett. Mater., 2022, 12(4) 350-353
BibTex   https://doi.org/10.22226/2410-3535-2022-4-350-353

Abstract

Thermal conductivity of diamond materials in transition from monocrystals to nanostructured nanodiamond composites declines two orders down due to the change in dominating factor that contributes to the thermal resistance – phonon scattering upon inner defects is changed by domination of phonon scattering at boundaries.The research was conducted to study the thermal conductivity of detonation nanodiamonds-based composites. Composite nanodiamond materials were obtained in the course of thermobaric sintering at the press-free high-pressure apparatus (BARS) under 5 GPa and at temperatures within the range of 1100 –1500°С. It was ascertained that unlike diamond monocrystals with their thermal conductivity reaching up to 2100 W / (mK), the thermal conductivity of a nanodiamond composite is considerably lower and does not go beyond 18 W / (mK). Specifically, the temperature dependence of the thermal conductivity coefficient of a nanodiamond composite is anomalous as compared to a similar dependence in diamond monocrystals. The thermal conductivity coefficient in diamond monocrystals grows in compliance with the rising temperature, whereas it shows practically no changes in a nanodiamond composite in the temperature range of 50 – 300°С. Such a temperature dependence of the thermal-conductivity coefficient is apparently related to the features of the phonon spectrum of diamond monocrystals. This feature is stipulated by the dependence of the phonon spectrum of nanocrystals on their size, represented by a set of phonon modes in the range of the wave vector 0 < q <1 / L, i.e., the size of a diamond nanocrystal of 4.5 nm is alleged to limit the excitation of harmonics during nanodiamond composite heating, as opposed to macroscopic crystals that demonstrate the excitation of higher-frequency phonon modes during temperature growing.

References (21)

1. H. Sumiya, N. Toda, S. Satoh. Diamond & Related Materials. 6, 1841 (1997). Crossref
2. J. R. Olson, R. O. Pohl, J. W. Vandersande, A. Zoltan, T. R. Anthony, W. F. Banholzer. Phys. Rev. B. 47, 14850 (1993). Crossref
3. E. A. Ekimov, N. V. Suetin, A. F. Popovich, et al. Inorg Mater. 44, 224 (2008). Crossref
4. F. M. Shakhov, A. P. Meilakhs, E. D. Eidelman. Tech. Phys. Lett. 42, 252 (2016). Crossref
5. S. V. Kidalov, F. M. Shakhov, A. Ya. Vul. Diamond & Related Materials. 17, 844 (2008). Crossref
6. E. A. Ekimov, E. L. Gromnitskaya, D. A. Mazalov, et al. Phys. Solid State. 46, 755 (2004). Crossref
7. A. M. Abyzov, S. V. Kidalov, F. M. Shakhov. Phys. Solid State. 54, 210 (2012). Crossref
8. K. Yoshida, H. Morigami. Microelectronics Reliability. 44, 303 (2004). Crossref
9. L. Weber, R. Tavangar. Adv Mater Res. 59, 111 (2009). Crossref
10. G. Bai, N. Li, et al. Journal of Alloys and Compounds. 735, 1648 (2018). Crossref
11. S. V. Kidalov, F. M. Shakhov, A. Ya. Vul’, A. N. Ozerin. Diamond & Related Materials. 19, 976 (2010). Crossref
12. P. A. Vityaz, V. T. Senyut. Phys. Solid State. 46, 764 (2004). Crossref
13. A. A. Chepurov, V. M. Sonin, J. M. Dereppe, E. I. Zhimule, A. I. Chepurov. Eur. J. Mineral. 32, 41 (2020). Crossref
14. A. S. Bogdanov, V. A. Plotnikov, A. P. Eliseev, V. G. Vins. Method for obtaining a material of high thermal conductivity and a heat sink made of a material obtained by this method. Patent RU № 2757042. 11 November 2021. (in Russian) [А. С. Богданов, В. А. Плотников, А. П. Елисеев, В. Г. Винс. Способ получения материала высокой теплопроводности и теплоотвод, изготовленный из материала, полученного этим способом. Патент РФ № 2757042 от 11.10.2021 г.].
15. D. G. Bogdanov, V. A. Plotnikov, A. S. Bogdanov, et al. International Journal of Refractory Metals & Hard Materials. 71, 101 (2018). Crossref
16. E. M. Baitinger, E. A. Belenkov, M. M. Brzhezinskaya, et al. Phys. Solid State. 54, 1715 (2012). Crossref
17. A. I. Chepurov, V. M. Sonin, A. A. Chepurov, et al. Inorg Mater. 47, 864 (2011). Crossref
18. F. Tuinstra, J. L. Koenig. J. Chem. Phys. 53, 1126 (1970). Crossref
19. S. N. Mikov, A. V. Igo, V. S. Gorelik. Phys. Solid state. 37, 3033 (1995). (in Russian) [С. Н. Миков, А. В. Иго, В. С. Горелик, ФТТ. 37, 3033 (1995).].
20. M. J. Lipp, V. G. Baonza, W. J. Evans, H. E. Lorenzana. Phys. Rev. B. 56, 5978 (1997). Crossref
21. J. W. Ager, D. K. Veirs, G. M. Rosenblatt. Phys. Rev. B. 43, 6491 (1991). Crossref

Similar papers

Funding

1. Russian Science Foundation - 21-17-00082
2. Altai State University - Prioritet 2030