On the management of nanostructuring of electric spark coatings

Received 22 June 2020; Accepted 13 August 2020;
This paper is written in Russian
Citation: V.I. Ivanov. On the management of nanostructuring of electric spark coatings. Lett. Mater., 2020, 10(4) 427-432
BibTex   https://doi.org/10.22226/2410-3535-2020-4-427-432

Abstract

Effect of energy inhomogeneity of spark pulses on the structure of an electric spark coating:
a - energy picture of the distribution of spark pulses; b - granularity of the coating structureAnalysis of the literature data indicates the great attention of specialists to the formation of ultrafine-grained (UFG) and nanocrystalline (NC) structures. Such structures are obtained by severe plastic deformation and other methods to improve the bulk properties of materials. Improving the properties of the surface layers of materials is achieved by modifying them with the formation of NC structures by different methods. In the article, in the development of earlier work, the results of studies of the formation of such structures by the method of electrospark alloying (ESD) are reflected. The aim of this work was to obtain experimentally quantitative data on the nanostructuring of electric-spark (ES) coatings, specifying the effect of the technological parameters of ESD and electrode material on this process. The studies included the determination of the energy parameters of the ESD process, changes in the mass of samples to obtain pulsed values, as well as the grain size of the structure of ES coatings. At the same time, modern certified technological and research equipment and recognized methods were used. The studies were carried out in a wide technological range: pulse energy E = 0.045…0.29 J, their duration timp = 20…80 μs, frequency fimp = 300…1500 Hz, the conditional value of the specific processing time tsp = τ…5τ. The result of the work is the following: coatings are obtained with a content of 5 to 50 % of the granular structure of the nanoscale level using electrodes made of hard alloys VK8 (92WC + 8Co) and STIM-3BOAn (72TiC +17.5Cr3C2 +10Ni + 0.5Al2O3nano); it was found that an increase in the pulse energy leads to an increase in the grain size of the nanoscale level and a decrease in their fraction in the coating, and an increase in the pulse frequency and specific ESD time, on the contrary, to a decrease in the grain size and an increase in their number; the use of anode materials with a refractory nanocomponent also contributes to the nanostructuring of ES coatings. In developing this topic, attention is drawn to one of the important issues requiring separate studies — this is the study of the role and efficiency of pulses of the low-energy zone of electric regimes in the process of nanostructure of ES coatings.

References (14)

1. A. S. Edelstein, R. C. Cammarata. Nanomaterials: Synthesis, Properties and Applications. Baltimor, The Johns Hopkins University (1998) 620 p.
2. A. I. Gusev. Nanomaterials, nanostructures, nanotechnology. 2rd edn., Rev. Moscow, Fizmatlit (2009) 416 p. (in Russian) [А. И. Гусев. Наноматериалы, наноструктуры, нанотехнологии. 2-е изд., испр. Москва, Физматлит (2009) 416 с.].
3. N. J. Petch. J. Iron and Steel Inds. 174, 25 (1953).
4. P. Bridgman. The physics of high pressure. London, G. Bell and sons, Itd. (1931).
5. L. S. Palatnik. Izv. USSR Academy of Sciences. - Ser. Physical. 15 (1), 80 (1951). (in Russian) [Л. С. Палатник. Изв. АН СССР. - Сер. физ. 15 (1), 80 (1951).].
6. E. A. Levashov, A. E. Kudryashov, O. V. Malochkin, S. A. Glukhov, T. A. Sviridova, F. Gammel, R. Suchentrunk. Russian Journal of Non-Ferrous Metals. 42 (5), 27 (2001).
7. F. Kh. Burumkulov, P. V. Senin, S. A. Velichko, V. I. Ivanov, P. A. Ionov, M. A. Okin. Surface Engineering and Applied Electrochemistry. 45 (6), 455 (2009). Crossref
8. D. N. Korotaev. Technological possibilities of forming wear-resistant nanostructures by electrospark alloying: monograph. Omsk, SibADI (2009) 255 p. (in Russian) [Д. Н. Коротаев. Технологические возможности формирования износостойких наноструктур электроискровым легированием: монография. Омск, СибАДИ (2009) 255 с.].
9. S. V. Nikolenko, A. P. Kuzmenko, D. I. Timakov, P. V. Abakymov. Surface Engineering and Applied Electrochemistry. 47 (3), 217 (2011). Crossref
10. V. Martsynkovskyy, V. Tarelnyk, Е. Konoplianchenko, O. Gaponova. Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Springer, Singapore (2019) 135 p. Crossref
11. N. Radek, K. Bartkowiak. Physics Procedia. 39, 295 (2012). Crossref
12. V. I. Ivanov. Hardening, coating and repair technologies: theory and practice: international materials. scientific-practical conf. St. Petersburg, Polytechnic Publishing House. University (2016) р. 164. (in Russian) [В. И. Иванов Технологии упрочнения, нанесения покрытий и ремонта: теория и практика: материалы междунар. науч.-практ. конф. Санкт-Петербург, Изд-во политехн. ун-та (2016) с. 164.].
13. V. I. Ivanov, F. Kh. Burumkulov, P. V. Senin, S. A. Velichko, P. A. Ionov, N. V. Rakov. Guidelines for the use of electric spark installation «BIG-4». Saransk, Mordov Publishing House University (2011) 35 p. (in Russian) [В. И. Иванов, Ф. Х. Бурумкулов, П. В. Сенин, С. А. Величко, П. А. Ионов, Н. В. Раков. Методические указания по применению электроискровой установки «БИГ-4». Саранск, Изд-во Мордов. ун-та (2011) 35 с.].
14. V. I. Ivanov. Electronic processing of materials. 51 (1), 105 (2015). (in Russian) [В. И. Иванов. Электронная обработка материалов. 51 (1), 105 (2015).].

Similar papers