Mechanical characteristics for seven-constant rhombohedral crystals and their nano/microtubes

R. Goldstein1, V. Gorodtsov1, D. Lisovenko1*, M. Volkov1§
1Ishlinsky Institute for Problems in Mechanics RAS, prospect Vernadskogo 101, b1, Moscow, 119526
Abstract
Stretching 7-constant rhombohedral crystals is described in the theory of elasticity. Numerical analysis, based on the obtained analytical expressions for Young's modulus and Poisson's ratio, is showed that three of the eight 7-constant rhombohedral crystals are partial auxetics, i.e. they have a negative Poisson's ratio in some directions of stretching crystals. Minimum and maximum values of Poisson's ratio and Young's modulus, values of the average Poisson's ratio and the minimum and maximum values of Poisson's ratio for particular orientations were obtained. Auxetic surfaces corresponding to zero Poisson's ratio were plotted. Solution of problems of tension and torsion curvilinear anisotropic nano/microtubes from 7-constant rhombohedral crystals was considered under Saint-Venant`s approach. Analytical expressions of Young's modulus and Poisson's ratio for these nano/microtubes were obtained. Numerical analysis allowed to find six of the eight auxetics among nano/microtubes. Values of Poisson's ratio for thin-walled nano/microtubes from 7-constant rhombohedral crystals, as well as critical values of thickness parameter at which the change in the sign of Poisson's ratio were obtained. It is shown that Young's modulus slightly dependent on the thickness parameter of the tube. An analytical expression for the torsional stiffness of nano/microtubes from 7-constant rhombohedral crystals were obtained. The numerical values of the coefficient characterizing the torsional stiffness of nano/microtubes of 7-constant rhombohedral crystals were given. It is found that the influence of the chirality angle on the mechanical characteristics of nano/microtubes from 7-constant rhombohedral crystals and the direct and inverse Poynting`s effect unlike tubes from orthorhombic and tetragonal crystals are absent.
Received: 06 November 2015   Accepted: 10 December 2015
Views: 158   Downloads: 55
References
1.
R.S. Lakes. Science 235 (4792), 1038 (1987)
2.
E.A. Friis, R.S. Lakes, J.B. Park. J. Mater. Sci. 23 (12), 4406 (1988)
3.
R.H. Baughman, J.M. Shacklette, A.A. Zakhidov, S. Stafstrom. Nature 392 (6674), 362 (1998)
4.
S.P. Tokmakova. Phys. Status Solidi B 242 (3), 721 (2005)
5.
A. Norris. Proc. Roy. Soc. A 462 (2075), 3385 (2006)
6.
T. Paszkiewicz, S. Wolski. Phys. Status Solidi, B 244 (3), 966 (2007)
7.
T. Paszkiewicz, S. Wolski. J. Phys., Conf. Ser. 104, 012038 (2008)
8.
A.C. Branka, D.M. Heyes, K.W. Wojciechowski. Phys. Status Solidi, B 246 (9), 2063 (2009)
9.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko. Mech. Solids 45 (4), 529 (2010)
10.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko. Doklady Phys. 56 (7), 399 (2011)
11.
A.C. Branka, D.M. Heyes, K.W. Wojciechowski. Phys. Status Solidi, B 248 (1), 96 (2011)
12.
A.C. Branka, D.M. Heyes, Sz. Mackowiak, S. Pieprzyk, K.W. Wojciechowski. Phys. Status Solidi, B 249 (7), 1373 (2012)
13.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko. Phys. Status Solidi, B 250 (10), 2038 (2013)
14.
V.V. Krasavin., A.V. Krasavin. Phys. Status Solidi, B 251 (11), 2314 (2014)
15.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko, M.A. Volkov. Phys. Mesomech 17 (2), 97 (2014)
16.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko. Phys. Mesomech. 12 (1-2), 38 (2009)
17.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko. Phys. Mesomech 13 (1-2), 12 (2010)
18.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko. Doklady Phys. 58 (9), 400 (2013)
19.
Landolt-Börnstein. Group III: Crystal and Solid State Physics. 29a. Second and Higher Order Constants. Berlin. Springer (1992)
20.
Yu.I. Sirotin, M.P. Shaskol’skaja. Fundamentals of Crystal Physics. Nauka, Moscow (1975)
21.
J. Nye. Physical Properties of Crystals. Oxford Univ. Press, Oxford (1985)
22.
C.N.R. Rao, M. Nath. Inorganic nanotubes. Dalton Trans 1, 1 (2003)
23.
R. Tenne. Nature Nanotechnology 1, 103 (2006)
24.
S.V. Golod, V.Ya. Prinz, V.I. Mashanov, A.K. Gutakovsky. Semicond. Sci. Technolog. 16 (3), 181 (2001)
25.
O.G. Schmidt, N. Schmarje, C. Deneke, C. Muller, N.-Y. Jin-Phillipp. Adv. Mater 13 (10), 756 (2001)
26.
Y. Mei, G. Huang, A.A. Solovev, S. Sanchez, E.B. Urena, I. Monch, F. Ding, T. Reindl, K.Y. Fu, P.K. Chu, O.G. Schmidt. Adv. Mater 20 (21), 4085 (2008)
27.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko. Doklady Physics 60 (9), 396 (2015).
28.
R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko, M.A. Volkov. Phys. Status Solidi, B 252 (7), 1580 (2015)