About self-organizing pores in polymeric films with titanium dioxide and microadding of boehmite

N.M. Antonova1
1Кamensk institute of the South – Russian State Technical University (Novocherkassk Polytechnic Institute) named after M.I. Platov, 23 Karl Marx Avenue, Kamensk-Shakhtinskiy, 347800, Russia
The opportunity was considered of transformation and ordering of a structure in a process of self-organizing in film composites with addition of nanosized particles. The opportunity was shown of generation ordered cells-holes in films generated on fluoroplastic  backings with addition of nanoparticles of boehmite (AlOOH) in polymeric suspensions of sodiym-carboxymethylcellulose with a plasticiser of glycerin and titanium dioxide’s powder. Morphological features of obtained vesicular structures were explored using  raster-electron microscopy technique. Values of surface tension were determined using ring method DuNouy in filled suspensions and an influence of addition of boehmite on it’s size was investigated. Values of a contact angle, value of work of adhesion, cohesion and energy of wetting in suspensions were calculated. Features of self-organizing were explored in composite systems with microparticles of titanium dioxide and nanoparticles of boehmite. The value of selective Shannon entropy was used for estimation of degree of order. Correlation of minimum variability of Shannon entropy was determined with generation of homogeneous cells by comparison. Selective Shannon entropy assumes a minimum  value Н=1,173 and a value of surface tension σ = 78,1 mn/m. Combinations of correlations of components were determined consisting of system with nanosized boehmites’ particles and a titanium dioxide  filling material, which enables generation homogeneous pores by by comparison with radius ≈300 µm: С sodiym-carboxymethylcellulose=100,00 g;  С glycerin =3,25 g;  С filling material =2,50g;  Сboehmite=0,15 g. The simple approach by comparison was proposed wich allow to generate vesicular composite materials with low temperature 50-60 degrees. It is possible to use obtained materials as reinforcing element, sorbing agent, abrasive materials, backings for upsetting of contact substance.
Accepted: 09 June 2015
Views: 59   Downloads: 15
D. V. Novikov, A. N. Krasovsky. Fractal grid of nanoglobule of gelatin. Solid state physics. 54 (11), 2183—2186 (2012). (in Russian) [Д. В. Новиков, А. Н. Красовский. Физика твердого тела. 54 (11), 2183—2186 (2012).]
D. V. Novikov, I. S. Kurindin, V. Bukoˇsek, G. K. Elyashevich. Texture of surface and percolation effects in microcellular directed films of polyolefin. Solid state physics. 54 (11), 2176—2182 (2012). (in Russian) [Д. В. Новиков, И. С. Курындин, V. Bukoˇsek, Г. К. Ельяшевич. Физика твердого тела. 54 (11), 2176—2182 (2012).]
N. M. Antonova, O. S. Ovchinnikov, A. P. Babichev. Research of influence of nanoporticles of al and nanofibres of boehmite on generation cells in composite materials based of sodium carboxymethylcellulose polymer. Nanoengineering. 3, 17—22 (2014). (in Russian) [Н. М. Антонова, О. С. Овчинников, А. П. Бабичев. Наноинженерия. 3, 17—22 (2014).]
N. M. Antonova, A. P. Babichev, V. Yu. Dorofeev. Regularities of a formation of the structure of al-containing nanocomposites upon Interaction of ASD-6 Powder with Polymer Suspension. Protection of Metals and Physical Chemistry of Surfaces. 49 (7), 868—872 (2013).
N. M. Antonova. Electron microscope investigation of aluminium-comprising nanoparticles. World Journal of Engineering. 11 (3), 209—212 (2014).
Laboratory works and tasks on colloid chemistry,ed. by J. G. Frolov, A. S. Grodsky. Moscow Chemistry (1986) 216 p. (in Russian) [Ю. Г. Фролов. Курс коллоидной химии. Поверхностные явления и дисперсные системы. М. Химия (1988) 464 с.]
A. A. Berlin, V. E. Basin. Basis of adhesion of polymers. Moscow Chemistry (1969) p. 319. (in Russian) [А. А. Берлин, В. Е. Басин. Основы адгезии полимеров. М. Химия (1969) 319 с.]
A. D. Zimon. Adhesion of liquids and moistenings Moscow. Chemistry (1974) 416 p. (in Russian) [А. Д. Зимон. Адгезия жидкости и смачивание. М. Химия, (1974) 416 с.]
J. G. Frolov. Course of colloid chemistry. Surface phenomena and disperse systems. Moscow. Chemistry (1988) 464 р. (in Russian) [Д. Г. Фролов. Курс коллоидной химии. Поверхностные явления и дисперсные системы. Москва. Химия, (1988) 464 с.]
O. A. Raevsky, A. F. Solotnov, V. P. Solovyev. Electron-donating and electrophilic functions of физиологически physiological acting and model compounds. / Journal of common chemistry. 57 (6), 1241—1248 (1987). (in Russian) [О. А. Раевский, А. Ф. Солотнов, В. П. Соловьев. Электронодонорные и электроноакцепторные функции физиологически активных и модельных соединений. Журнал общей хими. 157 (6), 1241—1248 (1987).]
О. Zaiman Models of chaos. Theoretical physics of homogeneous disordered systems. Moscow World (1982) 529 р. (in Russian) [Дж. Займан. Модели беспорядка. Теоретическая физика однородно неупорядоченных систем. М. Мир (1982) 529 с.]
D. V. Novikov, A. N. Krasovsky. Correlation of density-density on gelatin surface. Solid state physics. 54 (8), 1582—1585 (2012). (in Russian) [Д. В. Новиков, А. Н. Красовский. Корреляции плотность-плотность на поверхности желатина. Физика твердого тела. 54 (8), 1582—1585 (2012).]
O. V. Chumak. Entropy and fractals in data analysis. Moscow. Izhevsk. Research center Regular and chaotic dynamics (2011) 164 р. (in Russian) [О. В. Чумак. Энтропии и фракталы в анализе данных. М. Ижевск НИЦ Регулярная и хаотическая динамика. (2011) 164 с.]
A. D. Zimon, A. N. Pavlov. Colloid chemistry of nanoparticles. Moscow. Scientific world (2012) 224 р. (in Russian) [А. Д. Зимон, А. Н. Павлов. Коллоидная химия наночастиц. М. Научный мир (2012) 224 с.]