Thin films of titanium dioxide: morphology and phase structure

A. Stepanov, A. Vladimirov, A. Popova, L. Sotnikova show affiliations and emails
Received 24 March 2015; Accepted 06 November 2015;
This paper is written in Russian
Citation: A. Stepanov, A. Vladimirov, A. Popova, L. Sotnikova. Thin films of titanium dioxide: morphology and phase structure. Lett. Mater., 2015, 5(4) 389-393


Functional properties and features of materials based on nanocrystalline titanium dioxide (TiO2) are widely known for a long time. Titanium dioxide with anatase crystalline modification or mixtures of crystalline phases (anatase, rutile, brookite) shows high activity in catalytic reactions photostimulated by UV-light. To increase the photocatalytic activity of TiO2 it is necessary achieve the optimal selection of the phase composition in combination with a high surface area of TiO2. Recently, improving of efficiency of photocatalysts based on TiO2 has associated with the synthesis of particles with anatase crystalline structure, containing a greater number of unstable faces [001], and the synthesis of the thermodynamically less stable modification of TiO2, such as brookite. To found the dependence of the activity of topochemical reactions on morphology of the TiO2 surface, it is sufficient to use thin films of titanium dioxide. Morphologically uniform thin crystalline films of TiO2 are obtained by decomposition of the activated films of organotitanium precursor. The article is devoted to the study of the morphology and structure of the thin films of titanium dioxide obtained by thermal decomposition of the organotitanium precursor films. XRD and AFM methods show that it is real obtain TiO2 films with well-crystallized structure of anatase stable in the temperature range 400 - 500°C. It is found by study of the surface morphology of anatase film that the surface is formed with (101) crystallographic indices.

References (13)

1. S.S. Watson, D. Beydoun, J.A Scott, R. Amal. Chem. Eng.J. 95 (1-3), 213 - 220 (2003).
2. X. Chen, S.S. Mao. Chem. Rev. 107 (7), 2891 - 2959(2007).
3. T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura. J.Catal. 203 (1), 82 - 86 (2001).
4. P. Kajitvichyanukula, J. Ananpattarachaia, S. Pongpom.Sci. Tech. Adv. Mater. 6, 352 - 358 (2005).
5. Qu. Xiang, J. Yu, M. Jaroniec. Chem. Commun. 47, 4532- 4534 (2011).
6. H. Choia, E. Stathatosb, D.D. Dionysioua. WastewaterReclamation and Reuse for Sustainability. 202 (1-3), 199- 206 (2007).
7. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu. Nature. 453, 638 - 641 (2008). Crossref
8. M. Kobayashi, H. Kato, M. Kakihana. Nanomater.Nanotechnol. 3, 1 - 10 (2013).
9. А. Di Paola, M. Bellardita, L. Palmisano. Catalysts. 3 (1), 36 - 73 (2013). Crossref
10. Z. Wei, E. Kowalska, B. Ohtani. Molecules. 19, 19573 -19587 (2014). Crossref
11. X.H. Yang, Z. Li, G. Liu, J. Xing, C.H. Sun, H.G. Yang, C.Z. Li. Cryst. Eng. Commun. 13, 1378 - 1383 (2010). Crossref
12. J. Xing, H.G. Yang, G.Q. Lu (Max). Nanotechnology, SPIENewsroom.3894, 1-3(2011). Crossref
13. А.Yu. Stepanov, L.V. Sotnikova, А.А. Vladimirov.Abstract: International Congress on Energy Fluxes andRadiation Effects. - Tomsk: Publishing House of IAO SBRAS, 2014. - P. 492.

Similar papers