Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis

E.A. Belenkov1, F.K. Shabiev2
1Chelyabinsk State University, Br. Khashirinyh St. 129, 454001, Chelyabinsk
2Tyumen State Oil and Gas University, Volodarskogo St. 38, 625000, Tyumen
The structure of multilayer carbon nanotubes was studied by means of X-ray diffraction and elector microscopy.An example of  scanning electron microscopic image of carbon material heated up to 800 °C and following cooling in distilled water is presented. The outlined rectangular zone A contains scrolled structureIn this paper there were studied the structure of multilayer carbon nanotubes by methods of X-ray diffraction and elector microscopy. Carbon nanotubes were obtained by hydrothermal synthesis. Molecular mechanics methods (MM+) were used in model calculations. It is revealed that graphene layers form the structure of scrolled carbon nanotubes as a result of junction hydrogen atoms and/or hydroxyl groups to the graphene layers. As a result it is revealed that the amount of the tubular nanostructures obtained by hydrothermal synthesis is less than 1 ÷ 2% of the initial amount of graphite.
Received: 06 April 2015   Revised: 11 June 2015   Accepted: 26 June 2015
Views: 245   Downloads: 44
E.A. Belenkov, V.A. Greshnyakov. New CarbonMaterials. 28(4), 273-282 (2013). DOI: 10.1016/S1872-5805(13)60081-5
E.A. Belenkov, V.A. Greshnyakov. Physics of theSolid State. 55(8), 1754-1764 (2013). DOI: 10.1134/S1063783413080039 [Е.А. Беленков, В.А. Грешняков.Физика твердого тела. 55(8), 1640-1650 (2013)].
R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus.Applied physics letters. 60(18), 2204-2206 (1992). DOI: 10.1063/1.107080
P.J.F. Harris. Carbon nanotubes and related structures.Cambridge: Cambridge University Press, 2001, 294 pp.
S. Iijima. Nature. 354(6348), 56-58 (1991).DOI:10.1038/354056a0
A.V. Eletskii. Physics-Uspekhi, 45(4), 369–402 (2002).DOI: 10.1070/PU2002v045n04ABEH001033 [А.В.Елецкий. УФН, 172(4), 401-438 (2002).]
J.A. Baimova, R.T. Murzaev, S.V. Dmitriev. Physics of theSolid State. 56(10), 2010-2016 (2014). [Ю.А. Баимова,Р.Т. Мурзаев, С.В. Дмитриев. Физика твердого тела.56(10), 1946-1952 (2014).]
M.M. Brzhezinskaya, L.A. Pesin, V.M. Morilova, E.M.Baitinger. Physics of the Solid State. 54(9), 1930-1934 (2012). [М.М. Бржезинская, Л.А. Песин, В.М.Морилова, Е.М. Байтингер. Физика твердого тела.54(9), 1808-1812 (2012).]
M.M. Brzhezinskaya, E.M. Baitinger, E.A. Belenkov,L.M. Svirskaya. Physics of the Solid State, 55(4), 850-854(2013).
Z.H. Kang, E.B. Wang, L. Gao, S.Y. Lian,; M. Jiang,; C.W.Hu, L.J. Xu. Am. Chem. Soc. 125(45), 13652–13653(2003). DOI: 10.1021/ja037399m
A.N. Ivanov, L.N. Rastorgouev, Y.A. Skakov, J.S. Umansky.Crystallography, X-ray analysis and electron microscopy.Moscow: Metallurgy, 1982, 632 p. (in Russian) [А.Н.Иванов, Л.Н. Расторгуев, Ю.А. Скаков, Я.С. Уманский.Кристаллография, рентгенография и электроннаямикроскопия. Москва: Металлургия, 1982, 632 с.]
N.L. Allinger, J. Amer. Chem. Sos. 99(25), 8127–8134(1977). DOI: 10.1021/ja00467a001
E.A. Belenkov. Proceedings of the Chelyabinsk ScientificCenter of Ural Branch of the Russian Academy of Sciences10(1), 25-30 (2001). (in Russian) [Е.А. Беленков.Известия Челябинского научного центра УрО РАН.10(1), 25-30 (2001)].
A.V. Eletskii Physics-Uspekhi, 40(9), 899–924(1997). DOI: 10.1070/PU1997v040n09ABEH000282[А.В. Елецкий. УФН, 167(9), 945–972 (1997).DOI: 10.3367/UFNr.0167.199709b.0945]
A.R. Ubbelohde, F.A. Lewis. Graphite and its crystalcompounds. London: Oxford University Press, 1960,217 pp.
Cited by
Беленкова Т.Е., Чернов В.М., Беленков Е.А., Радиоэлектроника. Наносистемы. Информационные технологии 8(1), 49-54 (2016).
Беленков Е.А., Челябинский физико-математический журнал 1(4), 102-111 (2016).
Согрина Е.Э., Актуальные проблемы микро- и наноэлектроники, 216 (2016).
Савин А.В., Мазо М.А., Физика твердого тела 59(6), 1234-1239 (2017).