Modelling of active transformation of microstructure of two-phase Ti alloys during hot working

O.I. Bylya1, B.K. Pradhan1, E.B. Yakushina2, P.L. Blackwell2, R.A. Vasin3
1Institute of Technical Education and Research Siksha ‘o’ Anusandhan University Bhubaneswar, Odisha, India
2University of Strathclyde Renfrew, Inchinnan, UK
3Institute of mechanics, Moscow State University, Russia
Abstract
Being very strong and brittle, Ti alloys require special techniques to manufacture the parts with complex shapes out of them. Many of these technologies are based on superplastic and near-to-superplastic deforming. In these processes the transformation of microstructure of the material can be very significant and lead to changing the mechanical properties of the material along with deformation. Because of this proper description of the correlation between mechanical loading, changes in microstructure and mechanical behavior of material is required. Phenomenological scalar model with internal variable based on statistical description of microstructure is proposed and used for simulation of the high temperature deformation of Ti-6Al-4V alloy. The problems of obtaining the parameters of the model and sensitivity of the model to the accuracy of this process are discussed.
Received: 16 July 2014   Accepted: 02 August 2014
Views: 125   Downloads: 26
References
1.
O.A. Kajbyshev. Plasticity and superplasticity of metals.M.:Metallurgia. (1975) 280 p.
2.
K.A.  Padmanabhan, R.A.  Vasin and F.U.  Enikeev.Superplastic flow: phenomenology and mechanics.Berlin: Springer Verlag. (2001) 430 p.
3.
R.A. Vasin, F.U. Enikeev. Introduction in superplasticitymechanics. Ufa: Publishing house «Gilem». (1998) 278 p.
4.
A.K. Ghosh. Mater. Sc.Eng. A. 463, 36 (2007).
5.
F.U. Enikeev. Mater. Sc.Eng. A. 301, 253 (2001).
6.
G.C. Wang, M.W. Fu. J. Mater. Proc. Tech. 192–193, 555(2007).
7.
T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V. R. K.Prasad. Mater. Sc.Eng. A. 325, 112 (2002).
8.
S.  Venugopal, P.V.  Sivaprasad. Proceedings of theInternational Conference on Recent Advances inMaterial Processing Technology (RAMPT ‘05). NationalEngineering College. Kovilpatti. India. (2005) P.41–56.
9.
N. Ridley, P. S. Bate,B. Zhang. Mater. Sc.Eng. A. 463(1-2),224 (2007).
10.
S. S.  Bhattacharya, O.I.  Bylya, R.A.  Vasin andK.A.  Padmanabhan. Mechanics of Solids. 44(6), 951(2009).
11.
A.K. Ghosh and R.Raj. Acta Metall. 34(3), 447 (1986).
12.
S.A. Larin, V.N. Perevezentsev. PMM. 9, 14 (1990).
13.
W.B. Lee, H. S. Yang, Y.W. Kim, A.K. Mukheriee. ScriptaMetallurgica et Materialia. 29, 1403 (1993).
14.
S.  Guillard, M.  Thirukkonda, P.K.  Chaudhury, in: I.,R.  Srinivasan, P.  Bania, D.  Eylon, S.L.  Semiatin (Eds.).Advances in the Science and Technology of TitaniumAlloy Processing. TMS. Warrendale. PA. (1997) p. 93.
15.
O.I.  Bylja, R.A.  Vasin, A.V.  Muravlev, P.V.  Chistjakov,A.G.  Ermachenko, M.V.  Karavaeva. Scripta Materialia,36(8), 949 (1997).
16.
T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V. R. K.Prasad. Mat. Sci. Eng. A. 284(1), 184 (2000).