A new method of identification of constitutive equations according to the results of technological experiments

O. Tulupova1, V. Ganieva1, A. Kruglov1,2, F. Enikeev1
1Ufa State Petroleum Technological University, Kosmonavtov, 1, 450062, Ufa
2Institute for Metals Superplasticity Problems, Khalturina, 39, 450001, Ufa
Abstract
A method is proposed which allows one to search for a solution to inverse problems of identifying constitutive relations from the results of technological experiments. The method uses simplified mathematical models of technological plastic metal forming processes based on the membrane theory of shells, which allows for calculations of material constants K and m entering Backofen’s constitutive relation for superplasticity from the results of experiments carried out directly on a technological equipment. The method differs from others by the fact that for its implementation results of only two test formings of hemispherical domes at a constant gas pressure are sufficient. The set of experimental data include gas pressure, forming time and thickness in the pole of the dome. The method consists of three steps: calculation of initial material constants K and m; fitting of coefficient m* until the coincidence of computed value of the thicnkness at the dome pole with experimentally determined value; correction of the value of constant К*. Finite-elements simulations of superplastic forming (SPF) are done by means of ANSYS software. Computational model of material is considered in the framework of creep theory. Time dependencies of relative dome height and relative thickness of semispheres at the dome pole using approximate formulas and simulations using ANSYS are plotted. The method is verified on an example of superplastic forming of semispheres with 35 mm radius from sheet blanks of titanium alloy VT6 (analogue of Ti-6Al-4V) with thickness of 1 mm to a cylindric matrix with diameter 70 mm and height 35 mm with entry radius of 1 mm at two constant values of gas pressure 0.5 and 0.7 MPa. The forming temperature was equal to 900 °C. As a result of validation, agreement of experimental and computational data acceptable for engineering calculations has been obtained.
Received: 26 September 2016   Accepted: 02 March 2017
Views: 213   Downloads: 61
References
1.
W. A. Backofen, I. R. Turner, D. H. Avery. Superplasticity in an Al Zn Alloy. Trans. ASM.1964. V. 57. pp.980 – 990.
2.
Kaibyshev O. A. Superplasticity of industrial alloys. Metallurgy. 1984. p. 264. (in Russian) [О. А. Кайбышев. Сверхпластичность промышленных сплавов. Металлургия. 1984. с. 264.]
3.
F. U. Enikeev and A. A. Kruglov. An analysis of the superplastic forming of a thin circular diaphragm. International Journal of Mechanical Sciences. 1995. Vol.37. No.5. pp.473 – 483.
4.
R. A. Vasin, F. U. Enikeev, A. A. Kruglov, R. V. Safiullin. Identification of defining relations according to the results of technological experiments. Izv. RAN, Mechanics of solids. 2003. No. 2. pp. 111 – 123. (in Russian) [Р. А. Васин, Ф. У. Еникеев, А. А. Круглов, Р. В. Сафиуллин. Об идентификации определяющих соотношений по результатам технологических экспериментов. Изв. РАН, Механика твердого тела. 2003. № 2. с. 111 – 123.]
5.
S. A. Aksenov, E. N. Chumachenko, A. V. Kolesnikov, S. A. Osipov Determination of optimal gas forming conditions from free bulging tests at constant pressure. Journal of Materials Processing Technology. 2015. pp.158 – 164.
6.
F. S. Jarrar, F. K. Abu-Farha, Jr. L. G. Hector, M. K. Khraisheh. Simulation of High-Temperature AA5083 Bulge Forming with a Hardening. Softening Material Model. Journal of Materials Engineering and Performance. DOI: 10.1007 / s11665‑008‑9322‑5
7.
L. Carrino, G. Giuliano, C. Palmieri. On the optimization forming processes by the finite- elerment method. Jurnal of Meterials Processing Technology. 2003. pp. 373 – 377.
8.
F. U. Enikeev, O. P., Tulupov, V. R. Ganiev, A. K. Shmakov, A. V. Kolesnikov. Determination of the superplastic properties of aluminum alloys according to the results of the test molds round of membranes at constant pressure. KSHP. OMD. 2015. No.11. pp. 7 – 11. (in Russian) [Ф. У. Еникеев, О. П. Тулупова, В. Р. Ганиева, А. К. Шмаков, А. В. Колесников. Определение сверхпластических свойств алюминиевых сплавов по результатам тестовых формовок круглых мембран при постоянном давлении. КШП. ОМД. 2015. № 11. с. 7 – 11]
9.
G. G. Cornfield and R. H. Johnson. The Forming of Superplastic Sheet Materials. Int. J. Mech. Sci. 1970. V.12, № 6. P.479 – 490.
10.
O. P. Tulupova, A. A. Slesareva, A. A. Kruglov, F. U. Enikeev. Peculiarities of deforming a rectangular edge welded envelope made of commercial titanium alloy. Letters on materials. 2015.5 (4). pp. 478 – 481.
11.
A. Y. Samoylova, V. R. Ganieva, F. U. Enikeev, A. A. Kruglov. Analysis of the stress-strain state in the deformation zone during superplastic forming of circular membrane Part II. Modeling of the process of superplastic forming. Letters on materials. 2013. V. 3 (3). pp.252 – 256. (in Russian) [А. Ю. Самойлова, В. Р. Ганиева, Ф. У. Еникеев, А. А. Круглов. Анализ напряженно-деформированного состояния в очаге деформации при сверхпластической формовке круглой мембраны Часть II. Моделирование процесса сверхпластической формовки. Письма о материалах. 2013. т. 3 (3). pp. 252 – 256].