Features of structural transformations of HCP metallic Ti nanowires using Cleri-Rosato potential at low temperature

M. Aish, M.D. Starostenkov show affiliations and emails
Received  23 August 2016; Accepted  30 October 2016
Citation: M. Aish, M.D. Starostenkov. Features of structural transformations of HCP metallic Ti nanowires using Cleri-Rosato potential at low temperature. Lett. Mater., 2016, 6(4) 317-321
BibTex   https://doi.org/10.22226/2410-3535-2016-4-317-321

Abstract

A molecular dynamics (MD) simulation deformation of nanowires under uniaxial tensile strain condition for HCP Ti single crystals is performed in order to clarify the dependence of the deformation behavior of the nanowires from tension. Simulations are performed using tight-binding model (the Cleri-Rosato potential). A computer experiment is performed at a temperature 10 K. Diagrams of stored energy obtained at various time by the MD simulations of the tensile specimens of these metallic Ti nanowires show a rapid increase in stress up to a maximum followed by a gradual drop to zero when the specimen fails by ductile fracture. Features of stored energy changing can be divided into three regions: quasi-elastic, plastic and failure. These transformations are characterized by various structural features that manifest in the nature of the change curve of the stored strain energy and the emergence of various types of structural defects. The results showed that breaking position depended on the nanowire length. It seems that the use of Clery-Rozato potential possible to obtain sufficiently reliable representation of the behavior of nanometalic Ti HCP nanowires at their tension. The temperature dependence of the Young's modulus is similar to the known experimental results. The obtained simulation results are based not only on the analysis of structural changes in the entire volume, but also in certain areas and the atomic planes in the uniaxial tensile deformation in the direction <0001> Ti nanowires at 10 K. Similar studies were conducted on samples of Ti nanowires of different lengths, peppered section.

References (17)

1. F. Ercolessi and J. B. Adams. Europhys. Lett. 26, 583 (1994).
2. Y. Mishin, D. Farkas, M. J. Mehl and D. A. Papaconstantopoulos. Phys. Rev. B 59, 3393 (1999).
3. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulosm, A. F. Voter and J. D. Kress. Phys. Rev. B 63, 224106 (2001).
4. Y. Mishin, M. J. Mehl and D. A. Papaconstantopoulos. Phys. Rev. B 65, 224114 (2002).
5. R. R. Zope and Y. Mishin. Phys. Rev. B 68, 024102 (2003).
6. A. Strachan, T. Cagin, O. Gülseren, S. Mukherjee, R. E. Cohen and W. A. Goddard. Model. Simul. Mater. Sci. Eng. 12, S445 (2004).
7. Y. Mishin, M. J. Mehl and D. A. Papaconstantopoulos. Acta Mater. 53, 4029 (2005).
8. Y. Mishin and A. Y. Lozovoi. Acta Mater. 54, 5013 (2006).
9. H. Chamati, N. Papanicolaou, Y. Mishin and D. A. Papaconstantopoulos. Surf. Sci. 600, 1793 (2006).
10. I. J. Robertson, V. Heine and M. C. Payne. Phys. Rev. Lett. 70, 1944 (1993).
11. S. L. Frederiksen, K. W. Jacobsen, K. S. Brown and J. P. Sethna. Phys. Rev. Lett. 93, 165501 (2004).
12. F. Cleri and V. Rosato. Phys. Rev. B 48, 22 (1993).
13. Mohammed Aish and Mikhail Starostenkov. AIP Conf. Proc. 1698, 040006 (2016).
14. M. M. Aish, M. D. Starostenkov. Materials Physics and Mechanics. 24 (2), 139 (2015).
15. M. D. Starostenkov, M. M. Aish. Materials Physics and Mechanics (2014) 21 (1), 1 (2014).
16. M. D. Starostenkov, M. M. Aish. Advanced Materials Research. 1013, 242 (2014).
17. M. M. Aish, M. D. Starostenkov. Materials Physics and Mechanics. 18 (1), 53 (2013).

Similar papers