Ways of improvement of physicomechanical properties of polymeric composites on the basis of secondary polypropylene and natural excipients

A. Sadritdinov, R. Lazdin, E. Zakharova, A. Shurshina, V. Zakharov, E. Kulish show affiliations and emails
Received 27 May 2018; Accepted 19 July 2018;
Citation: A. Sadritdinov, R. Lazdin, E. Zakharova, A. Shurshina, V. Zakharov, E. Kulish. Ways of improvement of physicomechanical properties of polymeric composites on the basis of secondary polypropylene and natural excipients. Lett. Mater., 2018, 8(4) 406-409
BibTex   https://doi.org/10.22226/2410-3535-2018-4-406-409


Dependence of an elastic modulus of composition on the basis of secondary polypropelene filled 10 mass part wood flour from content of coupling agent EN13F1F3HH (1), MPP5X (2) and SANUMBUGO F1 (3) in composition.Creation of composition polymeric materials is one of the most perspective directions of the modern polymeric materials science. When developing such systems there can be problems of compatibility of components, for example between polymer and an excipient. Binding agents enter into composite structure for the purpose of ensuring connectivity of elements. The influences of part-time workers on rheological and physicomechanical behavior of polymeric composition on the basis of the secondary polymeric raw materials filled with natural components of a phytogenesis is studied in this work. It is shown that introduction of the part-time worker to composition affects MFR values - the more the part-time worker is in composition, the more MFR value, and so, and workability is easier. At the same time it should be noted that in case of use as part-time workers of EN13F1F3HH and SanUMBUGO F1 of regularity of change of the MFR a bit differents - increase of MFR values is observed only when content of the part-time worker in composition up to 1% of masses. Studying of rheological data demonstrates that introduction even of a small amount of the part-time worker leads to the fact that resilient properties at the composition containing the modifier are expressed less, the probability of formation of marriage at manufacture of products from these compositions respectively is less. Introduction of modifiers affects also physicomechanical properties of composition. Operation of SunUNBUGO F1 and EN13F1F3HM modifiers is close to each other, and MPP5X – differs. The lowest values of an elastic modulus take place when using as the SunUNBUGO F1 modifier. At the same time, increase filler content in composition reduces already not high values of an elastic modulus. Thus, during the research the basic possibility of regulation of rheological and physicomechanical behavior of polymeric composites not only by introduction of the part-time worker to composition playing a role superficially of the active material but also by regulation of conditions of receiving composites is shown.

References (15)

1. O. Faruk, A. K. Bledzki, H. Fink. Prog. Polym. Sci. 11, 1552 (2012). Crossref
2. A. Boudenne, L. Ibos, Y. Candau, S. Thomas. Handbook of multiphase polymer systems. John Wiley and Sons Ltd, Chichester (2011).
3. I. A. Avilova, V. M. Buznik, V. I. Volkov, G. F. Zhelezina, E. V. Morozov, A. E. Raskutin, O. V. Falaleev. Aviation materials and technologies. S1, 30 (2014). (in Russian) [И. А. Авилова, В. М. Бузник, В. И. Волков, Г. Ф. Железина, Е. В. Морозов, А. Е. Раскутин, О. В. Фалалеев. Авиационные материалы и технологии. S1, 30 (2014).].
4. A. K. Mohanty, M. Misra, L. T. Drzal. Natural Fibers, Biopolymers and Biocomposites. Taylor&Francis Group, USA (2005).
5. O. Faruk, M. Sain. Biofiber Reinforcements in Composite Materials. Cambridge, Woodhead Publishing Ltd. (2015) 772 p.
6. J. Jose, A. Nag, G. B. Nando. Iran Polym J. 23(10), 801 (2014).
7. R. Chandra, R. Rustgi. Prog. Polym. Sci. 23, 1273 (1998).
8. C. David, C. De Kesei, F. Lefebvre, W. Weiland. Angew Makromol Chem. 216, 21 (1994).
9. A. Arkatkar, J. Arutchelvi, M. Sudhakar. The Open Envir. Eng. J. 2, 68 (2009).
10. D. Garlotta. J Polym Environ. 9(2), 63 (2001).
11. Z. Lu John, Wu Qinglin, S. McNabb Harold. Wood and Fiber Science. 1, 88 (2000). DOI: 2-s2.0-0002538571.
12. Yu. V. Kornev, A. M. Bukanov, O. B. Yumashev, V. A. Zhogin, Yu. A. Gamlitsky. The MITHT bulletin of M. V. Lomonosov. 4(2), 19 (2009). (in Russian) [Ю. В. Корнев, А. М. Буканов, О. Б. Юмашев, В. А. Жогин, Ю. А. Гамлицкий. Вестник МИТХТ им. М. В. Ломоносова. 4(2), 19 (2009).].
13. E. L. Kalinchev, M. B. Sakovtseva. International news of the world of plastic. 7, 48 (2005) (in Russian) [Э. Л. Калинчев, М. Б. Саковцева. Международные новости мира пластмасс. 7, 48 (2005).].
14. V. I. Shaybakova, L. A. Abdrakhmanova, R. K. Nizamov. Polymers in construction: scientific Online magazine. 1(5), 46 (2017). (in Russian) [В. И. Шайбакова, Л. А. Абдрахманова, Р. К. Низамов. Полимеры в строительстве: научный Интернет-журнал. 1(5), 46 (2017).].
15. G. Schramm. A practical approach to rheology and rheometry. Koloss, Moskva (2003) 312 p. (in Russian) [Г. Шрамм. Основы практической реологии и реометрии. КолосС, Москва (2003) 312 с.].

Cited by (3)

Y. Danchenko, A. Kariev, V. Andronov, A. Cherkashina, V. Lebedev, T. Shkolnikova, O. Burlutskyi, A. Kosse, Y. Lutsenko, D. Yavors'ka. EEJET. 1(6 (103)), 32 (2020). Crossref
A. Sadritdinov, E. Zakharova, A. Khusnullin, V. Zakharov. Lett. Mater. 10(4), 404 (2020). Crossref
A. A. Psyanchin, A. B. Glazyrin, E. M. Zakharova, A. G. Khusnullin, A. R. Sadretdinov, V. P. Zakharov. Inorg. Mater. Appl. Res. 12(5), 1271 (2021). Crossref

Similar papers