Assessment of rheological behavior of secondary polymeric raw materials in the conditions corresponding to processing of polymers by method of extrusion and injection molding

R. Lazdin, V. Zakharov, A. Shurshina, E. Kulish show affiliations and emails
Received: 10 August 2018; Revised: 10 December 2018; Accepted: 17 December 2018
This paper is written in Russian
Citation: R. Lazdin, V. Zakharov, A. Shurshina, E. Kulish. Assessment of rheological behavior of secondary polymeric raw materials in the conditions corresponding to processing of polymers by method of extrusion and injection molding. Letters on Materials, 2019, 9(1) 70-74


The dependence of complex viscosity of a melt of mix PP with HDPE-20 (1) and LDPE-276 (2) defined with a frequency of oscillation of 0,1 Hertz  on a ratio of polymers in mix.In the present work, rheological behavior of polymeric raw materials in the conditions corresponding to processing of polymers by the methods of extrusion and injection molding is modeled. Mixes based on secondary polypropylene and the following polymers: secondary polyethylene of low pressure LDPE-276 and secondary polyethylene of high pressure HDPE- 20 were used as a polymeric basis. The composites were obtained in a melt using the laboratory station “PlastographEC” (Brabender, Germany) in 15 min at a load of 200 N, temperature of 180 °C and screw speed of 30 revolutions per minute. Rheological measurements were taken in the oscillation mode on a modular dynamic rheometer Haake MarsIII at 220 °C in an oscillation frequency range from 0.01 to 100 Hz. It is revealed that with an increase in content of the second polymer in the mix an increase in the values of complex viscosity of the melt always takes place. This is apparently due to the fact that the samples of the second polymers in all cases were characterized by a higher value of the melt viscosity, than the secondary polypropylene. In addition,an increase in the content of the second polymer in the mix led to an increase in the values of exponent n in the frequency dependence of the viscosity that confirms the strengthening of the dependence of viscosity on the frequency of oscillations and a deviation of melt viscosity of composition from the behaviour typical of a Newtonian liquid. It is shown that compositions based on mixes of polypropylene with HDPE-20 and LDPE-276 can be fairly easily processed at high shear rates, while the enhanced interaction of polymers will provide them improved deformation and strength characteristics.


1. G. Schramm. A Practical Approach to Rheology and Rheometry. 2nd ed. Gebrueder HAAKE GmbH, Karlsruhe. (2000) 291 p.
2. Yu. T. Panov, L. A. Chizhova, E. V. Ermolaeva. The modern methods of processing of polymeric materials. Extrusion. Injection molding: manual. Izd-vo VlGU, Vladimir, (2013) 128 p. (in Russian) [Ю. Т. Панов, Л. А. Чижова, Е. В. Ермолаева. Современные методы переработки полимерных материалов. Экструзия. Литье под давлением: учебное пособие. Изд-во ВлГУ, Владимир, (2013) 128 с.].
3. S. V. Vlasov, L. B. Kandyrin, V. N. Kuleznev et al. Bases of technology of processing of plastic: studies. for higher education institutions. Himiya, Moscow. (2004) 600 p. (in Russian) [С. В. Власов, Л. Б. Кандырин, В. Н. Кулезнев и др. Основы технологии переработки пластмасс: учеб. для вузов. Химия, Мосвка. (2004) 600 с.].
4. E. S. Cobkallo. Polyethylene, polypropylene and other polyolefins. Professiya, St. Petersburg. (2006) 256 p.
5. H. Makio, T. Fujita. 14th Asia Pacifil Confederation of Chemical Engineering Congress, Singapore. 760 (2012).
6. A. P. Belokurova, T. A. Ageeva. Himiya and technology of receiving polyolefins: manual. Ivan. state. chemical - technol. un-t, Ivanovo. (2011) 126 p. (in Russian) [А. П. Белокурова, Т. А. Агеева. Химия и технология получения полиолефинов: учебное пособие. Иван. гос. хим.-технол. ун-т, Иваново. (2011) 126 с.].
7. L. Guseva. Plastiks. 12, 84 (2009). (in Russian) [Л. Гусева. Пластикс. 12, 84 (2009).].
8. K. V. Goryachkina. Prioritetnyie nauchnyie napravleniya: ot teorii k praktike. 33, 169 (2016). (in Russian) [К. В. Горячкина. Приоритетные научные направления: от теории к практике. 33, 169 (2016).].
9. L. V. Chuprova, E. R. Mullina, O. A. Mishurina, O. V. Yershova. Sovremennyie problemyi nauki i obrazovaniya. 4, 212 (2014). (in Russian) [Л. В. Чупрова, Э. Р. Муллина, О. А. Мишурина, О. В. Ершова. Современные проблемы науки и образования. 4, 212 (2014).].
10. N. P. Prorokova, S. Yu. Vavilova, M. I. Biryukova, G. Yu. Yurkov, V. M. Buznik. Rossiiskie nanotehnologii. 9 - 10, 61 (2014). (in Russian) [Н. П. Пророкова, С. Ю. Вавилова, М. И. Бирюкова, Г. Ю. Юрков, В. М. Бузник. Российские нанотехнологии. 9 - 10, 61 (2014).].
11. A. E. Zaikin. Klei. Germetiki, Tehnologii. 8, 32 (2018). (in Russian) [А. Е. Заикин. Клеи. Герметики, Технологии. 8, 32 (2018).].
12. I. A. Kirsh, D. A. Pomogova, A. E. Chalyih, I. S. Tveritnikova. Plasticheskie massyi. 5 - 6, 5 (2018). (in Russian) [И. А. Кирш, Д. А. Помогова, А. Е. Чалых, И. С. Тверитникова. Пластические массы. 5 - 6, 5 (2018).].
13. H. G. Karian. Handbook of Polypropylene and Polypropylene Composites, Revised and Expanded. CRC Press, Boca Raton. (2003) 576 p.
14. H. P. Blom, J. W. The, T. Bremner, A. J. Rudin. Polymer. 39, 4011 (1998).
15. C. M. Tai, R. KY. Li, C. N. Ng. J. Polymer testing. 2, 143 (2000).
16. L. S. Shibryaeva, A. A. Popov, G. E. Zaikov. Thermal Oxidation of Polymer Blends. VSP, Leiden, Boston. (2006) 248 p.
17. S. Jose, A. S. Aprem, B. Francis et al. Eur. Polym. J. 9, 2105 (2004).
18. L. A. Utracki. Commercial polymer blends. Chapman and Hall, London. (1998) 658 p.
19. S. Doroudaini, C. B. Park, M. T. Kortschot. Polym Eng Sci. 7, 1205 (1998).
20. V. N. Kuleznev. Polymer blend. Chemistry, Moscow. (1980) 304 p. (in Russian) [В. Н. Кулезнев Смеси полимеров. Химия, Москва. (1980) 304 с.].