Localized Magnetic Inhomogeneities Generation on Defects, as a New Channel of Damping for a Moving Domain Wall

A.M. Gumerov, E.G. Ekomasov, R.V. Kudryavtsev, M.I. Fakhretdinov show affiliations and emails
Received 01 June 2018; Accepted 26 June 2018;
Citation: A.M. Gumerov, E.G. Ekomasov, R.V. Kudryavtsev, M.I. Fakhretdinov. Localized Magnetic Inhomogeneities Generation on Defects, as a New Channel of Damping for a Moving Domain Wall. Lett. Mater., 2018, 8(3) 299-304
BibTex   https://doi.org/10.22226/2410-3535-2018-3-299-304

Abstract

When a domain wall moves through a magnetic defect region (marked with dashed lines), a localized nonlinear wave (magnetic breather) is excited.The paper theoretically studies the domain wall energy losses, which arise when it moves through the magnetic defect region. These losses are largely related to the generation of localized magnetization waves in the defect region. It is shown that the process of domain wall energy scattering on the defect can be regarded as a new "channel of damping" for a domain wall. The study was carried out using numerical and analytical methods on the example of a three-layer model of the ferromagnetic structure, in which the intermediate layer differs in physical parameters from the rest of the crystal. The intermediate layer (or magnetic defect) was simulated by the spatial modulation of the magnetic parameters. The motion regimes, in which "effective damping" is minimal, were calculated. This damping value depends on the excitation energy of the localized waves and is determined by the ratio of the defect properties and initial velocity of the domain wall motion. It is specifically shown that an increase in the domain wall energy loss is associated with an increase in the localized waves oscillations amplitude. In this case, the dependence of the localized waves oscillations amplitude on the domain wall initial velocity has only one maximum. It is at this point that the domain wall energy losses are maximal. They can be significantly reduced if the domain wall velocity differs noticeably in the direction of decreasing or increasing in comparison with the maximum point.

References (38)

1. K. S. Novoselov, S. V. Dubonos, S. V. Morozov, D. V. D. Bergen, J. K. Maan, A. K. Geim. Int. J. Nanosci. 3, 87 (2004). Crossref
2. K. S. Novoselov, S. V. Dubonos, E. Hill, A. K. Geim. Physica E Low Dimens Syst Nanostruct. 22, 406 (2004). Crossref
3. K. S. Novoselov, A. K. Geim, S. V. Dubonos, E. W. Hill, I. V. Grigorieva. Nature. 426, 812 (2003). Crossref
4. K. S. Novoselov, A. K. Geim, van der Berg, S. V. Dubonos, J. K. Maan. IEEE Trans. Magn. 38, 2583 (2002). Crossref
5. R. Kukreja, S. Bonetti, Z. Chen, D. Backes, Y. Acremann, J. A. Katine, A. D. Kent, H. A. Dürr, H. Ohldag, J. Stöhr. Phys. Rev. Lett. PRL. 115, 096601 (2015). Crossref
6. J. P. Tetienne, T. Hingant, J. V. Kim, L. H. Diez, J. P. Adam, K. Garcia, J. F. Roch, S. Rohart, A. Thiaville, D. Ravelosona, V. Jacques. Science. 344, 1366 (2014). Crossref
7. J. Rusz, S. Muto, J. Spiegelberg, R. Adam, K. Tatsumi, D. E. Bürgler, C. M. Schneider. Nat. Commun. 7, 12672 (2016). Crossref
8. M. V. Gerasimov, M. V. Logunov, A. V. Spirin, Yu. N. Nozdrin, I. D. Tokman. Phys. Rev. B. 94, 014434 (2016). Crossref
9. A. V. Golovchan, V. V. Kruglyak, V. S. Tkachenko, A. N. Kuchko. Royal Society open science. 5(1), 172285 (2018). Crossref
10. L. Kavitha, E. Parasuraman, D. Gopi, A. Prabhu, R. A. Vicencio. Journal of Magnetism and Magnetic Materials. 401, 394 (2016). Crossref
11. L. Kavitha, A. Mohamadou, E. Parasuraman, D. Gopi, N. Akila, A. Prabhu. Journal of Magnetism and Magnetic Materials. 404, 91 (2016). Crossref
12. A. Hubert and R. Schafer. Magnetic Domains. Springer, Heidelberg (1998) 720 p.
13. M. A. Shamsutdinov, V. N. Nazarov, I. U. Lomakina, А. Т. Kharisov, D. M. Shamsutdinov. Ferro- and antiferromagnitodinamika. Nonlinear Oscillations, wavesand solitons. Мoscow, Nauka (2009) 456 p. (in Russian) [М. А. Шамсутдинов, И. Ю. Ломакина, В. Н. Назаров, А. Т. Харисов, Д. М. Шамсутдинов. Ферро- и антиферромагнитодинамика. Нелинейные колебания, волны и солитоны. Москва, Наука (2009) 456 с.].
14. M. A. Shamsutdinov, V. G. Veselago, M. M. Farztdinov, E. G. Ekomasov. Phys. Solid State. 32, 288 (1990). (in Russian) [М. А. Шамсутдинов, В. Г. Веселаго, М. М. Фарзтдинов, Е. Г. Екомасов. ФТТ. 32(2), 497 (1990).].
15. V. V. Plavskii, M. A. Shamsutdinov, E. G. Ekomasov, A. G. Davletbaev. Phys. Met. Metallogr. 75, 589 (1993). (in Russian) [B. B. Плавский, Е. Г. Екомасов, M. A. Шамсутдинов, А. Г. Давлетбаев. ФММ. 75(6), 26 (1993).].
16. Y. Sun, R. Gao. Solid State Commun. 149, 393 (2009). Crossref
17. B. N. Filippov, M. N. Dubovik. Phys. Solid State. 56, 967 (2014). Crossref
18. M. N. Dubovik, L. G. Korzunin, B. N. Filippov. The Physics of Metals and Metallography. 116, 656 (2015). Crossref
19. E. G. Ekomasov, A. M. Gumerov, R. R. Murtazin, R. V. Kudryavtsev, A. E. Ekomasov, N. N. Abakumova. Solid State Phenomena. Switzerland. Trans Tech Publications. 233 - 234, 51 (2015). Crossref
20. E. G. Ekomasov, R. R. Murtazin, V. N. Nazarov. Journal of Magnetism and Magnetic Materials. 385, 217 (2015). Crossref
21. E. G. Ekomasov, A. M. Gumerov. Letters on materials. 4(4), 237 (2014). (in Russian) [Е. Г. Екомасов, А. М. Гумеров. Письма о материалах. 4(4), 237 (2014).]. Crossref
22. D. D. Tang, Yu.-J. Le. Magnetic Memory Fundamentals and Technolog. Cambridge, Cambridge University Press, New York (2010) 196 p.
23. E. G. Ekomasov, R. V. Kudryavtsev, A. M. Gumerov. Letters on Materials. 7(2), 160 (2017). (in Russian) [Е. Г. Екомасов, Р. В. Кудрявцев, А. М. Гумеров. Письма о материалах. 7(2), 160 (2017).]. Crossref
24. A. B. Borisov, V. V. Kiselev. Nonlinear waves, solitons and localized structures in magnetic materials. T.1. Quasi-one-dimensional magnetic solitons. UB RAS, Ekaterinburg (2009) 512 p. (in Russian) [А. Б. Борисов, В. В. Киселёв. Нелинейные волны, солитоны и локализованные структуры в магнетиках. Т.1. Квазиодномерные магнитные солитоны. УрО РАН, Екатеринбург (2009) 512 с.].
25. J. Cuevas-Maraver, P. G. Kevrekidis, F. Williams (Eds.). The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-energy Physics, V. 10. Springer (2014) 263 p.
26. J. A. González, A. Bellorin, M. A. García-Ñustes, L. E. Guerrero, S. Jiménez, L. Vázquez. Physics Letters A. 381(24), 1995 (2017). Crossref
27. J. A. González, A. Bellorin, L. E. Guerrero. Physical Review E. 65(6), 065601 (2002). Crossref
28. V. A. Gani, A. E. Kudryavtsev. Physical Review E. 60(3), 3305 (1999). Crossref
29. V. A. Gani, A. E. Kudryavtsev, M. A. Lizunova. Physical Review D. 89(12), 125009 (2014). Crossref
30. A. Askari, D. Saadatmand, K. Javidan. Waves in Random and Complex Media. 1 - 14 (2018). Crossref
31. K. Javidan. Physical Review E. 78(4), 046607 (2008). Crossref
32. S. P. Popov. Computational Mathematics and Mathematical Physics. 58(3), 437 (2018). Crossref
33. E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev. Letters on materials. 6(2), 138 (2016). (in Russian) [Е. Г. Екомасов, А. М. Гумеров, Р. В. Кудрявцев. Письма о материалах. 6(2), 138 (2016).]. Crossref
34. E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev. JETP Letters. 101, 835 (2015). Crossref
35. E. G. Ekomasov, Sh. A. Azamatov, R. R. Murtazin. Phys. Met. Metallogr. 105(4), 313 (2008). Crossref
36. T. Dauxois, M. Peyrard. Physics of Solitons. N. Y., Cambridge University Press (2010).
37. Y. S. Kivshar, F. Zhang, L. Vazquez. Phys. Rev. Lett. 67, 1177 (1991). Crossref
38. O. M. Brown, J. S. Kivshar. The Frenkel-Kontorova model: Concepts, methods, and applications. Springer (2004) 519 p.

Cited by (4)

1.
E. Ekomasov, V. Nazarov, A. Gumerov, K. Samsonov, R. Murtazin. Lett. Mater. 10(2), 141 (2020). Crossref
2.
A. Gumerov, E. Ekomasov, R. Kudryavtsev, M. Fakhretdinov. Lett. Mater. 10(3), 260 (2020). Crossref
3.
A. Gumerov, E. Ekomasov, R. Kudryavtsev. J. Phys.: Conf. Ser. 1389(1), 012004 (2019). Crossref
4.
E. G. Ekomasov, V. N. Nazarov, K. Yu. Samsonov, R. R. Murtazin. Tech. Phys. Lett. 47(7), 499 (2021). Crossref

Similar papers