Localized Magnetic Inhomogeneities Generation on Defects, as a New Channel of Damping for a Moving Domain Wall

A.M. Gumerov, E.G. Ekomasov, R.V. Kudryavtsev, M.I. Fakhretdinov
Received: 01 June 2018; Revised: 25 June 2018; Accepted: 26 June 2018
This paper is written in Russian
Citation: A.M. Gumerov, E.G. Ekomasov, R.V. Kudryavtsev, M.I. Fakhretdinov. Localized Magnetic Inhomogeneities Generation on Defects, as a New Channel of Damping for a Moving Domain Wall. Letters on Materials, 2018, 8(3) 299-304
BibTex   DOI: 10.22226/2410-3535-2018-3-299-304


When a domain wall moves through a magnetic defect region (marked with dashed lines), a localized nonlinear wave (magnetic breather) is excited.The paper theoretically studies the domain wall energy losses, which arise when it moves through the magnetic defect region. These losses are largely related to the generation of localized magnetization waves in the defect region. It is shown that the process of domain wall energy scattering on the defect can be regarded as a new "channel of damping" for a domain wall. The study was carried out using numerical and analytical methods on the example of a three-layer model of the ferromagnetic structure, in which the intermediate layer differs in physical parameters from the rest of the crystal. The intermediate layer (or magnetic defect) was simulated by the spatial modulation of the magnetic parameters. The motion regimes, in which "effective damping" is minimal, were calculated. This damping value depends on the excitation energy of the localized waves and is determined by the ratio of the defect properties and initial velocity of the domain wall motion. It is specifically shown that an increase in the domain wall energy loss is associated with an increase in the localized waves oscillations amplitude. In this case, the dependence of the localized waves oscillations amplitude on the domain wall initial velocity has only one maximum. It is at this point that the domain wall energy losses are maximal. They can be significantly reduced if the domain wall velocity differs noticeably in the direction of decreasing or increasing in comparison with the maximum point.

References (38)

K. S. Novoselov, S. V. Dubonos, S. V. Morozov, D. V. D. Bergen, J. K. Maan, A. K. Geim. Int. J. Nanosci. 3, 87 (2004). DOI: 10.1142/S0219581X04001857
K. S. Novoselov, S. V. Dubonos, E. Hill, A. K. Geim. Physica E Low Dimens Syst Nanostruct. 22, 406 (2004). DOI: 10.1016/j.physe.2003.12.032
K. S. Novoselov, A. K. Geim, S. V. Dubonos, E. W. Hill, I. V. Grigorieva. Nature. 426, 812 (2003). DOI: 10.1038/nature02180
K. S. Novoselov, A. K. Geim, van der Berg, S. V. Dubonos, J. K. Maan. IEEE Trans. Magn. 38, 2583 (2002). DOI: 10.1109/TMAG.2002.801959
R. Kukreja, S. Bonetti, Z. Chen, D. Backes, Y. Acremann, J. A. Katine, A. D. Kent, H. A. Dürr, H. Ohldag, J. Stöhr. Phys. Rev. Lett. PRL. 115, 096601 (2015). DOI: 10.1103/PhysRevLett.115.096601
J. P. Tetienne, T. Hingant, J. V. Kim, L. H. Diez, J. P. Adam, K. Garcia, J. F. Roch, S. Rohart, A. Thiaville, D. Ravelosona, V. Jacques. Science. 344, 1366 (2014). DOI: 10.1126/science.1250113
J. Rusz, S. Muto, J. Spiegelberg, R. Adam, K. Tatsumi, D. E. Bürgler, C. M. Schneider. Nat. Commun. 7, 12672 (2016). DOI: 10.1038/ncomms12672
M. V. Gerasimov, M. V. Logunov, A. V. Spirin, Yu. N. Nozdrin, I. D. Tokman. Phys. Rev. B. 94, 014434 (2016). DOI: 10.1103/PhysRevB.94.014434
A. V. Golovchan, V. V. Kruglyak, V. S. Tkachenko, A. N. Kuchko. Royal Society open science. 5(1), 172285 (2018). DOI: 10.1098/rsos.172285
L. Kavitha, E. Parasuraman, D. Gopi, A. Prabhu, R. A. Vicencio. Journal of Magnetism and Magnetic Materials. 401, 394 (2016). DOI: 10.1016/j.jmmm.2015.10.021
L. Kavitha, A. Mohamadou, E. Parasuraman, D. Gopi, N. Akila, A. Prabhu. Journal of Magnetism and Magnetic Materials. 404, 91 (2016). DOI: 10.1016/j.jmmm.2015.11.036
A. Hubert and R. Schafer. Magnetic Domains. Springer, Heidelberg (1998) 720 p.
M. A. Shamsutdinov, V. N. Nazarov, I. U. Lomakina, А. Т. Kharisov, D. M. Shamsutdinov. Ferro- and antiferromagnitodinamika. Nonlinear Oscillations, wavesand solitons. Мoscow, Nauka (2009) 456 p. (in Russian) [М. А. Шамсутдинов, И. Ю. Ломакина, В. Н. Назаров, А. Т. Харисов, Д. М. Шамсутдинов. Ферро- и антиферромагнитодинамика. Нелинейные колебания, волны и солитоны. Москва, Наука (2009) 456 с.]
M. A. Shamsutdinov, V. G. Veselago, M. M. Farztdinov, E. G. Ekomasov. Phys. Solid State. 32, 288 (1990). (in Russian) [М. А. Шамсутдинов, В. Г. Веселаго, М. М. Фарзтдинов, Е. Г. Екомасов. ФТТ. 32(2), 497 (1990).]
V. V. Plavskii, M. A. Shamsutdinov,E. G. Ekomasov, A. G. Davletbaev. Phys. Met. Metallogr. 75, 589 (1993). (in Russian) [B. B. Плавский, Е. Г. Екомасов, M. A. Шамсутдинов, А. Г. Давлетбаев. ФММ. 75(6), 26 (1993).]
Y. Sun, R. Gao. Solid State Commun. 149, 393 (2009). DOI: 10.1016/j.ssc.2008.12.015
B. N. Filippov, M. N. Dubovik. Phys. Solid State. 56, 967 (2014). DOI: 10.1134/S1063783414050084
M. N. Dubovik, L. G. Korzunin, B. N. Filippov. The Physics of Metals and Metallography. 116, 656 (2015). DOI: 10.1134/S0031918X16040049
E. G. Ekomasov, A. M. Gumerov, R. R. Murtazin, R. V. Kudryavtsev, A. E. Ekomasov, N. N. Abakumova. Solid State Phenomena. Switzerland. Trans Tech Publications. 233 – 234, 51 (2015). DOI: 10.4028/www.scientific.net/SSP.233-234.51
E. G. Ekomasov, R. R. Murtazin, V. N. Nazarov. Journal of Magnetism and Magnetic Materials. 385, 217 (2015). DOI: 10.1016/j.jmmm.2015.03.019
E. G. Ekomasov, A. M. Gumerov. Letters on materials. 4(4), 237 (2014). (in Russian) [Е. Г. Екомасов, А. М. Гумеров. Письма о материалах. 4(4), 237 (2014).] DOI: 10.22226/2410‑3535‑2014‑4‑237‑240
D. D. Tang, Yu.‑J. Le. Magnetic Memory Fundamentals and Technolog. Cambridge, Cambridge University Press, New York (2010) 196 p.
E. G. Ekomasov, R. V. Kudryavtsev, A. M. Gumerov. Letters on Materials. 7(2), 160 (2017). (in Russian) [Е. Г. Екомасов, Р. В. Кудрявцев, А. М. Гумеров. Письма о материалах. 7(2), 160 (2017).] DOI: 10.22226/2410‑3535‑2017‑2‑160‑164
A. B. Borisov, V. V. Kiselev. Nonlinear waves, solitons and localized structures in magnetic materials. T.1. Quasi-one-dimensional magnetic solitons. UB RAS, Ekaterinburg (2009) 512 p. (in Russian) [А. Б. Борисов, В. В. Киселёв. Нелинейные волны, солитоны и локализованные структуры в магнетиках. Т.1. Квазиодномерные магнитные солитоны. УрО РАН, Екатеринбург (2009) 512 с.]
J. Cuevas-Maraver, P. G. Kevrekidis, F. Williams (Eds.). The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-energy Physics, V. 10. Springer (2014) 263 p.
J. A. González, A. Bellorin, M. A. García-Ñustes, L. E. Guerrero, S. Jiménez, L. Vázquez. Physics Letters A. 381(24), 1995 (2017). DOI: 10.1016/j.physleta.2017.03.042
J. A. González, A. Bellorin, L. E. Guerrero. Physical Review E. 65(6), 065601 (2002). DOI: 10.1103/PhysRevE.65.065601
V. A. Gani, A. E. Kudryavtsev. Physical Review E. 60(3), 3305 (1999). DOI: 10.1103/PhysRevE.60.3305
V. A. Gani, A. E. Kudryavtsev, M. A. Lizunova. Physical Review D. 89(12), 125009 (2014). DOI: 10.1103/PhysRevD.89.125009
A. Askari, D. Saadatmand, K. Javidan. Waves in Random and Complex Media. 1 – 14 (2018). DOI: 10.1080/17455030.2018.1439203
K. Javidan. Physical Review E. 78(4), 046607 (2008). DOI: 10.1103/PhysRevE.78.046607
S. P. Popov. Computational Mathematics and Mathematical Physics. 58(3), 437 (2018). DOI: 10.1134/S0965542518030107
E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev. Letters on materials. 6(2), 138 (2016). (in Russian) [Е. Г. Екомасов, А. М. Гумеров, Р. В. Кудрявцев. Письма о материалах. 6(2), 138 (2016).] DOI: 10.22226/2410‑3535‑2017‑2‑160‑164
E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev. JETP Letters. 101, 835 (2015). DOI: 10.1134/S0021364015120061
E. G. Ekomasov, Sh. A. Azamatov, R. R. Murtazin. Phys. Met. Metallogr. 105(4), 313 (2008). DOI: 10.1134/S0031918X08040017
T. Dauxois, M. Peyrard. Physics of Solitons. N. Y., Cambridge University Press (2010).
Y. S. Kivshar, F. Zhang, L. Vazquez. Phys. Rev. Lett. 67,1177 (1991). DOI: 10.1103/PhysRevLett.67.1177
O. M. Brown, J. S. Kivshar. The Frenkel-Kontorova model: Concepts, methods, and applications. Springer (2004) 519 p.