External magnetic field control of the magnetic breather parameters in a three-layer ferromagnetic structure

E.G. Ekomasov, V.N. Nazarov, A.M. Gumerov, K.Y. Samsonov, R.R. Murtazin show affiliations and emails
Received: 13 January 2020; Revised: 05 February 2020; Accepted: 05 February 2020
This paper is written in Russian
Citation: E.G. Ekomasov, V.N. Nazarov, A.M. Gumerov, K.Y. Samsonov, R.R. Murtazin. External magnetic field control of the magnetic breather parameters in a three-layer ferromagnetic structure. Lett. Mater., 2020, 10(2) 141-146
BibTex   https://doi.org/10.22226/2410-3535-2020-2-141-146


The dependence of the amplitude of the oscillations of the magnetic breather on time in an alternating fieldThe generation and autoresonant excitation of a magnetic breather in a three-layer ferromagnet by fields of variable frequency and small amplitude in the presence of dissipation in the system is considered. The ferromagnetic structure consists of two wide identical layers separated by a thin layer with modified values of the magnetic anisotropy parameter. The anisotropy parameters are considered functions of the coordinate directed perpendicular to the layer interface. In the one-dimensional case, the function of the anisotropy parameter is modeled in the form of a rectangle. The external magnetic field is variable in time with a small amplitude and frequency, which is a linear function of time. The obtained equation of motion for magnetization in the form of a sine-Gordon equation was solved numerically using an explicit integration scheme. The distribution of magnetization at the initial time was set in the form of a Bloch domain boundary, located far from a thin layer. At certain values of the parameters of a thin layer, when a domain wall passes at a constant speed through it, a magnetic inhomogeneity is formed in the form of a magnetic breather. In the absence of an external field, the breather amplitude decays with time. An analysis of the solutions of the equation of motion in an alternating field shows the possibility, under certain conditions, of increasing with time the amplitude of the magnetic breather. For each case of magnetic anisotropy parameter values, there is a threshold value of the magnetic field amplitude leading to resonance. The resonance effect is also affected by the geometric parameters of a thin layer: with a decrease in the width of the layer, the amplitude of the breather increases more slowly in time. With a large layer width, the translational mode of breather oscillations is also excited.

References (40)

1. E. G. Ekomasov, R. R. Murtazin, V. N. Nazarov. JMMM. 385, 217 (2015). Crossref
2. E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev. Letters on materials. 6 (2), 138 (2016). (in Russian) [Е. Г. Екомасов, А. М. Гумеров, Р. В. Кудрявцев. Письма о материалах. 6 (2), 138 (2016).]. Crossref
3. V. V. Kiselev, A. A. Rascovalov. Chaos, Solitons & Fractals. 45, 1551 (2012). Crossref
4. S. V. Batalov, A. G. Shagalov. Phys. Metals Metallogr. 114 (2), 103 (2013). Crossref
5. S. V. Batalov, V. V. Kiselev, A. A. Raskovalov. Comput. Math. and Math. Phys. 59 (8), 1324 (2019). Crossref
6. P. J. Metaxas, M. Albert, S. Lequeux, V. Cros, J. Grollier, P. Bortolotti, A. Anane, H. Fangohr. Phys. Rev. B. 93, 054414 (2016). Crossref
7. K. S. Novoselov, S. V. Dubonos, S. V. Morozov, D. V. D. Bergen, J. K. Maan, A. K. Geim. Int. J. Nanosci. 3, 87 (2004). Crossref
8. K. S. Novoselov, A. K. Geim, S. V. Dubonos, E. W. Hill, I. V. Grigorieva. Nature. 426, 812 (2003). Crossref
9. R. Kukreja, S. Bonetti, Z. Chen, D. Backes, Y. Acremann, J. A. Katine, A. D. Kent, H. A. Dürr, H. Ohldag, J. Stöhr. Phys. Rev. Lett. 115, 096601 (2015). Crossref
10. J. P. Tetienne, T. Hingant, J. V. Kim, L. H. Diez, J. P. Adam, K. Garcia, J. F. Roch, S. Rohart, A. Thiaville, D. Ravelosona, V. Jacques. Science. 344, 1366 (2014). Crossref
11. M. V. Gerasimov, M. V. Logunov, A. V. Spirin, Yu. N. Nozdrin, I. D. Tokman. Phys. Rev. B. 94, 014434 (2016). Crossref
12. D. Backes, F. Macià, S. Bonetti, R. Kukreja, H. Ohldag, A. D. Kent. Phys. Rev. Lett. 115, 127205 (2015). Crossref
13. J. Leliaert, J. Mulkers. J. Appl. Phys. 125, 180901 (2019). Crossref
14. E. G. Ekomasov, A. M. Gumerov, R. R. Murtazin, R. V. Kudryavtsev, A. E. Ekomasov, N. N. Abakumova. Solid state phenomena. 233 - 234, 51 (2015). Crossref
15. A. M. Gumerov, E. G. Ekomasov, R. V. Kudryavtsev, M. I. Fakhretdinov. Letters on Materials. 8 (3), 299 (2018). (in Russian) [А. М. Гумеров, Е. Г. Екомасов, Р. В. Кудрявцев, М. И. Фахретдинов. Письма о материалах. 8 (3), 299 (2018).]. Crossref
16. E. G. Ekomasov, R. R. Murtazin, O. B. Bogomazova, A. M. Gumerov. JMMM. 339. 133 (2013). Crossref
17. D. D. Tang, Y.-J. Le. Magnetic Memory: Fundamentals and Technolog. Cambridge University Press, New York (2010) 196 p. Crossref
18. V. S. Tkachenko, V. V. Kruglyak, A. N. Kuchko. Metamaterials. 3, 28 - 32 (2009). Crossref
19. E. Della Torre, C. M. Perlov. J. Appl. Phys. 69, 4596 (1991). Crossref
20. E. G. Ekomasov, Sh. A. Azamatov, R. R. Murtazin. Phys. Met. Metallogr. 105 (4), 313 (2008). Crossref
21. The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-energy Physics. Vol. 10 (Ed. by J. Cuevas-Maraver, P. G. Kevrekidis, F. Williams). Springer (2014) 263 p. Crossref
22. V. N. Nazarov, L. A. Kalyakin, М. А. Shamsutdinov. Solid State Phenomena. 168 - 169, 81 (2011). Crossref
23. L. A. Kalyakin. J. Math. Sci. 125 (5), 658 (2005). Crossref
24. E. G. Ekomasov, V. N. Nazarov. Letters on materials. 8 (2), 158 (2018). (in Russian) [В. Н. Назаров, Е. Г. Екомасов. Письма о материалах. 8 (2), 158 (2018).]. Crossref
25. L. A. Kalyakin. Russian Math. Surveys. 63 (5), 791 (2008). Crossref
26. R. N. Garifullin, L. A. Kalyakin, M. A. Shamsutdinov. Comput. Math. and Math. Phys. 47, 1158 (2007). Crossref
27. L. A. Kalyakin, M. A. Shamsutdinov. Theor. Math. Phys. 160, 960 (2009). Crossref
28. S. V. Batalov, E. M. Maslov, A. G. Shagalov. J. Exp. Theor. Phys. 108, 890 (2009). Crossref
29. A. I. Neishtadt. Proc. Steklov Inst. Math. 250, 183 (2005). (in Russian) [А. И. Нейштадт. Тр. МИАН. 250, 198 (2005).].
30. A. L. Fradkov. Phys. Usp. 48, 103 (2005). Crossref
31. B. Meerson, L. Friedland. Phys. Rev. A. 41 (9), 5233 (1990). Crossref
32. J. Fajans, L. Friedland. Am. J. Phys. 69 (10), 1096 (2001). Crossref
33. L. A. Kalyakin, O. A. Sultanov, M. A. Shamsutdinov. Theoret. and Math. Phys. 167 (3), 762 (2011). Crossref
34. L. A. Kalyakin. Theoret. and Math. Phys. 194 (3), 331 (2018). Crossref
35. L. Friedland, A. G. Shagalov. Phys. Rev. E. 71, 036206 (2005). Crossref
36. L. Friedland, A. G. Shagalov. Phys. Rev. E. 73, 0666122006 (2006). Crossref
37. V. S. Teplov, V. D. Bessonov, S. V. Batalov, A. V. Telegin. J. Phys.: Conf. Ser. 1389, 012141 (2019). Crossref
38. M. A. Shamsutdinov, I. Yu. Lomakina, V. N. Nazarov, A. T. Kharisov, D. M. Shamsutdinov. Ferro- i antiferromagnitodinamika. Nelineynyye kolebaniya, volny i solitony. Moscow, Nauka (2009) 456 p. (in Russian) [М. А. Шамсутдинов, И. Ю. Ломакина, В. Н. Назаров, А. Т. Харисов, Д. М. Шамсутдинов. Ферро- и антиферромагнитодинамика. Нелинейные колебания, волны и солитоны. Москва, Наука (2009). 456 с.].
39. E. G. Ekomasov, R. R. Murtazin, S. A. Azamatov. Phys. Solid State. 54 (8). 1584 (2012). Crossref
40. A. M. Gumerov, E. G. Ekomasov, R. R. Murtazin, V. N. Nazarov. Comput. Math. Math. Phys. 55 (4), 628 (2015). Crossref

Similar papers


1. Tyumen State University - Decree of the Government of the Russian Federation No. 211 of March 16, 2013, agreement No. 02.A03.21.0011
2. Bashkir State University - Russian Foundation for Basic Research (project \ No \ 18-31-00122)
3. Institute of Molecule and Crystal Physics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences - State assignment no. # AAAA-A19-119022290052-9