The effect of dissipation and an external magnetic field on the resonance dynamics of a domain wall in a five-layer ferromagnetic structure

A.M. Gumerov, E.G. Ekomasov, R.V. Kudryavtsev, M.I. Fakhretdinov show affiliations and emails
Received 23 March 2020; Accepted 27 April 2020;
This paper is written in Russian
Citation: A.M. Gumerov, E.G. Ekomasov, R.V. Kudryavtsev, M.I. Fakhretdinov. The effect of dissipation and an external magnetic field on the resonance dynamics of a domain wall in a five-layer ferromagnetic structure. Lett. Mater., 2020, 10(3) 260-265
BibTex   https://doi.org/10.22226/2410-3535-2020-3-260-265

Abstract

It is shown that the collective effects of the influence of the presence of thin magnetic
layers (with a reduced value of the magnetic anisotropy constant) in
a five-layer ferromagnet on the dynamics of domain walls is preserved at
the action of an external magnetic field, whereas when a DW moves along
inertia almost completely disappear. Chart of possible
scenarios of DW dynamics depending on its initial velocity and
the distance between two thin layers.By the example of a five-layer ferromagnetic structure with two thin and three wide magnetic layers, the influence of attenuation and an external constant magnetic field on the dynamics of the domain wall (DW) is considered. It is shown that the features of the dynamics of the domain wall in a multilayer magnetic system in the presence of thin magnetic layers with a reduced value of the magnetic anisotropy constant are largely related to the resonant energy exchange between magnetic inhomogeneities. A diagram of the possible scenarios of the dynamics of the domain wall is constructed depending on the initial velocity of its movement and the distance between two identical thin magnetic layers. The presence of a critical distance was found that separates the dynamics of the domain wall into two regions with qualitatively different system behavior. In the first region, where the distance between the thin layers is rather small, the scattering of the domain wall occurs similarly to the case of the three-layer system studied earlier. In the second region, a much more complex dynamics of the scattering of the domain wall is observed, associated with the interaction of the domain wall and a localized nonlinear magnetization wave. The main effects of the collective influence of thin layers on the dynamics of the DW are preserved under the action of an external force, whereas when the DW moves by inertia, it almost completely disappears. A new dynamic effect of “quasitunneling” of the domain boundary, i. e. the passage of the domain boundary through the effective potential barrier, which appears due to the presence of two thin layers in the system at speeds lower than the minimum value for the case of a single thin layer. The result obtained - the existence of a range of parameters in which substantially less energy is required for a domain wall to pass through both thin layers can be interesting from a practical point of view.

References (29)

1. D. D. Tang, Yu.-J. Le. Magnetic Memory Fundamentals and Technolog. Cambridge, Cambridge University Press, New York (2010) 196 p.
2. V. V. Kruglyak, C. S. Davies, V. S. Tkachenko, O. Y. Gorobets, Y. I. Gorobets, A. N. Kuchko. Journal of Physics D: Applied Physics. 50 (9), 094003 (2017). Crossref
3. E. Della Torre, C. M. Perlov. J. Appl. Phys. 69 (8), 4596 (1991). Crossref
4. Y. Gusieva, P. Graczyk, O. Gorobets, M. Krawczyk. Acta Physica Polonica A. 133 (3), 489 (2018). Crossref
5. E. G. Ekomasov, Sh. A. Azamatov, R. R. Murtazin. Phys. Met. Metallogr. 105 (4), 313 (2008). Crossref
6. M. A. Shamsutdinov, V. N. Nazarov, I. U. Lomakina, А. Т. Kharisov, D. M. Shamsutdinov. Ferro- i antiferromagnitodinamika. Nelineynyye kolebaniya, volny i solitony. Мoscow, Nauka (2009) 456 p. (in Russian) [М. А. Шамсутдинов, И. Ю. Ломакина, В. Н. Назаров, А. Т. Харисов, Д. М. Шамсутдинов. Ферро- и антиферромагнитодинамика. Нелинейные колебания, волны и солитоны. Москва, Наука (2009) 456 с.].
7. E. G. Ekomasov, A. M. Gumerov, R. R. Murtazin, R. V. Kudryavtsev, A. E. Ekomasov, N. N. Abakumova. Solid State Phenomena. 233 - 234, 51 (2015). Crossref
8. E. G. Ekomasov, R. R. Murtazin, V. N. Nazarov. Journal of Magnetism and Magnetic Materials. 385, 217 (2015). Crossref
9. A. M. Gumerov, E. G. Ekomasov, R. V. Kudryavtsev, M. I. Fakhretdinov. Letters on Materials. 8 (3), 299 (2018). Crossref
10. E. G. Ekomasov, R. R. Murtazin, O. B. Bogomazova, A. M. Gumerov. JMMM. 339, 133 (2013). Crossref
11. V. V. Kiselev, A. A. Rascovalov. Chaos, Solitons & Fractals. 45, 1551 (2012). Crossref
12. K. S. Novoselov, A. K. Geim, S. V. Dubonos, E. W. Hill, I. V. Grigorieva. Nature. 426, 812 (2003). Crossref
13. R. Kukreja, S. Bonetti, Z. Chen, D. Backes, Y. Acremann, J. A. Katine, A. D. Kent, H. A. Dürr, H. Ohldag, J. Stöhr. Phys. Rev. Lett. PRL. 115, 096601 (2015). Crossref
14. J. P. Tetienne, T. Hingant, J. V. Kim, L. H. Diez, J. P. Adam, K. Garcia, J. F. Roch, S. Rohart, A. Thiaville, D. Ravelosona, V. Jacques. Science. 344, 1366 (2014). Crossref
15. M. V. Gerasimov, M. V. Logunov, A. V. Spirin, Yu. N. Nozdrin, I. D. Tokman. Phys. Rev. B. 94, 014434 (2016). Crossref
16. D. Backes, F. Macià, S. Bonetti, R. Kukreja, H. Ohldag, A. D. Kent. PRL. 115 (12), 127205 (2015). Crossref
17. The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-energy Physics. V.10. (Ed. by J. Cuevas-Maraver, P. G. Kevrekidis, F. Williams). Springer (2014) 263 p. Crossref
18. T. Dauxois, M. Peyrard. Physics of Solitons. New York, Cambridge University Press (2010).
19. O. M. Brown, J. S. Kivshar. The Frenkel-Kontorova model: Concepts, methods, and applications. Springer (2004) 519 p.
20. M. B. Fogel, S. E. Trullinger, A. R. Bishop, J. A. Krumhandl. Phys. Rev. B. 15, 1578 (1977). Crossref
21. O. M. L. Gomide, M. Guardia, T. M. Seara. Journal of Differential Equations. 269(4), 3282 (2020). Crossref
22. E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev. JETP Letters. 101, 835 (2015). Crossref
23. E. G. Ekomasov, A. M. Gumerov. Letters on materials. 3 (2), 103 (2013). (in Russian) [А. М. Гумеров, Е. Г. Екомасов. Письма о материалах. 3 (2), 103 (2013).]. Crossref
24. D. Saadatmand, S. V. Dmitriev, D. I. Borisov, P. G. Kevrekidis. Phys. Rev. E. 90 (5), 052902 (2014). Crossref
25. E. G. Ekomasov, R. V. Kudryavtsev, A. M. Gumerov. Letters on Materials. 7 (2), 160 (2017). (in Russian) [Е. Г. Екомасов, Р. В. Кудрявцев, А. М. Гумеров. Письма о материалах. 7 (2), 160 (2017).]. Crossref
26. E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev, S. V. Dmitriev, V. N. Nazarov. Brazilian Journal of Physics. 48 (6), 576 (2018). Crossref
27. E. G. Ekomasov, A. M. Gumerov. Letters on materials. 4 (4), 237 (2014). Crossref
28. E. G. Ekomasov, A. M. Gumerov, R. V. Kudryavtsev. Letters on materials. 6 (2), 138 (2016). (in Russian) [Е. Г. Екомасов, А. М. Гумеров, Р. В. Кудрявцев. Письма о материалах. 6 (2), 138 (2016).]. Crossref
29. E. G. Ekomasov, A. M. Gumerov, R. R. Murtazin. Mathematical Methods in the Applied Sciences. 40 (17), 6178 (2016). Crossref

Similar papers

Funding