High strain rate superplasticity of an 1570C aluminum alloy with bimodal structure obtained by equal-channel angular pressing and rolling

E. Avtokratova, O. Mukhametdinova, O. Sitdikov, M. Markushev show affiliations and emails
Accepted  26 May 2015
This paper is written in Russian
Citation: E. Avtokratova, O. Mukhametdinova, O. Sitdikov, M. Markushev. High strain rate superplasticity of an 1570C aluminum alloy with bimodal structure obtained by equal-channel angular pressing and rolling. Lett. Mater., 2015, 5(2) 129-132
BibTex   https://doi.org/10.22226/2410-3535-2015-2-129-132

Abstract

Using as-cast homogenized aluminum alloy 1570C, the feasibility has been demonstrated to reach enhanced parameters of high-strain-rate superplasticity with elongations to failure more than 2000% in the alloys of the Al-Mg-Sc-Zr system having the partially recrystal-lized structure, processed by warm equal-channel angular pressing with the effective strain of e~3. In this alloy, the fine-grained compo-nent was represented by a “mantle” of new preferably equiaxed grains with size of about 1-2 mm, whose volume fraction did not exceed 30%. Meanwhile, the remnant fragments of original grains, having the size of 10 though 50 mm, contained a well-defined substructure with the subgrain size of about 1mm. The alloy with such bimodal structure exhibited the highest elongation to failure ~ 2570 % at the initial strain rate of 1.4 × 10-2 s-1 and the temperature of 520 ºC. Subsequent rolling, carried out at ambient temperature to e~1.6, resulted in replacement of the bimodal structure described above by a heavily deformed one, consisting of the areas of high density dislocations developed in both coarse and fine grained regions; that further improved the alloy superplastic characteristics. So, the interval of the test-ing parameters, corresponding to optimum superplasticity, was extended toward the higher strain rates and simultaneously, the maximum elongation was significantly increased. The highest elongation to failure of ~ 3030 % was recorded at the initial strain rate of 1.4 × 10-2 s-1 and the temperature of 520 ºC.

References (21)

1. R. Mulyukov, R. Imaev, A. Nazarov, M. Imaev, V. Imaev. Superplasticity of ultrafine-grained alloys: Experiment, theory, technology. M.: Science. (2014), 284 p. (in Russian) [Р. Мулюков, Р. Имаев, А. Назаров, М. Имаев, В. Имаев. Сверхпластичность ультрамелкозернистых сплавов: Эксперимент, теория, технологии. М. Наука (2014) 284 с.].
2. Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes, T. G. Langdon. Acta Materialia. 48, 3633-3640 (2000).
3. R. Kaibyshev, E. Avtokratova, A. Apollonov, R. Davies. Scripta Materialia. 54, 2119-2124 (2006).
4. V. Perevezentsev, M. Shcherban, M. Murashkin, R. Valiev. Technical Physics Letters. 33, 648-650 (2007).
5. F. Liu, Z. Ma. Scripta Materialia. 59, 882-885 (2008).
6. E. Avtokratova, O. Sitdikov, M. Markushev, R. Mulyukov. Materials Science Engineering: A. 538, 386-390 (2012).
7. E. Avtokratova, O. Mukhametdinova, O. Sitdikov, M. Markushev, S. V. S. N. Murty, M. J. N. V. Prasad, B. P. Kashyap. Letters on Materials. 4 (2), 93-95 (2014).
8. V. Davydov, T. Rostova, V. Zakharov, Yu. Filatov, V. Yelagin Materials Science Engineering: A. 280, 30-36 (2000).
9. Yu. Filatov, V. Yelagin, V. Zakharov. Materials Science Engineering: A. 280, 97-101 (2000).
10. T. Nieh, L. Hsiung, J. Wadsworth, R. Kaibyshev. Acta Materialia. 46 (8), 2789-2800 (1998).
11. K. Park, H. Lee, C. Lee, W. Nam, D. Shin. Scripta Materialia. 51, 479483 (2004).
12. H. Akamatsu, T. Fujinami, Z. Horita, T. G. Langdon. Scripta Materialia. 44, 759-764 (2001).
13. S. Malopheyev, A. Kipelova, I. Nikulin, R. Kaibyshev. Materials Science Forum. 667-669, 815-820 (2011).
14. E. Avtokratova, O. Sitdikov, O. Mukhametdinova, M. Markushev. Materials Science Forum. 710, 223-228 (2012).
15. E. Avtokratova, O. Sitdikov. Fundamental problems of modern materials science. 10 (1), 72-76 (2013). (in Russian) [Е. В. Автократова, О. Ш. Ситдиков. Фундаментальные проблемы современного материаловедения. 10 (1), 72-76 (2013).].
16. S. Ferrasse, V. Segal, S. Kalidindi, F. Alford. Materials Science Engineering: A. 368, 28-40 (2004).
17. O. Sitdikov, E. Avtokratova, R. Babicheva. Physics of metals and metallography. 110 (2), 153-161 (2010).
18. O. Sitdikov, E. Avtokratova, R. Babicheva, T. Sakai, K. Tsuzaki, Y. Watanabe. Materials Transactions. 53 (1), 55-62 (2012).
19. O. Sitdikov, E. Avtokratova, T. Sakai, K. Tsuzaki. Metallurgical and Materials Transactions: A. 44 (2), 1087-1100 (2013).
20. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T. G. Langdon. Acta Materialia. 50, 553-564 (2002).
21. Y. Riddle, T. Sanders. Metallurgical and Materials Transactions: A. 35, 341-350 (2004).

Cited by (1)

1.
E. N. Moskvichev, V. A. Skripnyak, V. V. Skripnyak, A. A. Kozulin, D. V. Lychagin. Phys Mesomech. 21(6), 515 (2018). Crossref

Similar papers