Structure and Superplasticity of the Al-Mg-TM Alloy after Equal Channel Angular Pressing and Rolling

O. Sitdikov, E. Avtokratova, O. Latypova, O. Latypova, M.V. Markushev, M.V. Markushev show affiliations and emails
Received: 17 October 2018; Revised: 23 October 2018; Accepted: 23 October 2018
This paper is written in Russian
Citation: O. Sitdikov, E. Avtokratova, O. Latypova, O. Latypova, M.V. Markushev, M.V. Markushev. Structure and Superplasticity of the Al-Mg-TM Alloy after Equal Channel Angular Pressing and Rolling. Lett. Mater., 2018, 8(4s) 561-566
BibTex   https://doi.org/10.22226/2410-3535-2018-4-561-566

Abstract

Microstructure and superplastic (SP) characteristics of the alloy 1570C subjected to equal channel angular pressing (ECAP) at the temperature of 325°C and subsequent warm rolling (WR) at the same temperature and cold rolling  (CR) at room temperature with reductions 86 and 80%, respectively, were compared.The microstructure and superplastic (SP) characteristics of the commercial alloy 1570C (Al - 5Mg - 0.18Mn - 0.2Sc - 0.08Zr - 0.01Fe - 0.01Si, wt.%) subjected to equal channel angular pressing (ECAP) at the temperature of 325°C (about 0.6Tm) to the effective strain of 8 and subsequent isothermal rolling at the same and room temperatures with reductions 86 and 80%, respectively, were compared. It has been found that the development of ultrafine grained structure under ECAP with the grain size of about 1 µm and the volume fraction of 0.60 - 0.70 led to the unique alloy SP properties with the maximum elongations - to - failure up to 3300% in a wide temperature - strain rate range. Subsequent warm rolling resulted in increased to 0.80 - 0.85 volume fraction of ultrafine grains with no changes in their size, while cold rolling, in contrast, provided a heavily deformed (work hardened) structure with a high dislocation density. Despite such difference in the structures formed, the alloy SP behavior in both rolled states was nearly similar with maximum elongations about 2800% at the temperature of 520°C and the strain rate of 1.4 × 10-2 s-1. Also, roughly similar microstructures were developed under such optimum alloy SP deformation conditions, irrespectively of its rolling temperature.

References (20)

1. Y. A. Filatov, V. I. Yelagin, V. V. Zacharov. Mater. Sci. Eng. A. 280, 97 (2000). Crossref
2. T. G. Nieh, L. M. Hsiung, J. Wadsworth, R. Kaibyshev. Acta Mater. 46, 2789 (1998). Crossref
3. X. Wang, Q. Li, R. Wu, X. Zhang, L. Ma. Adv. Mater. Sci. Eng. 2018, 17 (2018). Crossref
4. Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes, T. G. Langdon. Acta Mater. 48, 3633 (2000). Crossref
5. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, T. G. Langdon. Acta Mater. 50, 553 (2002). Crossref
6. F. Musin, R. Kaibyshev, Y. Motohashi, G. Itoh. Scripta Mater. 50, 511 (2004). Crossref
7. V. N. Perevezentsev, M. Y. Shcherban, M. Y. Murashkin, R. Z. Valiev. Tech. Phys. Letters. 33, 648 (2007). Crossref
8. K. Turba, P. Málek, M. Cieslar. Mater. Sci. Eng. A. 462, 91 (2007). Crossref
9. E. Avtokratova, O. Sitdikov, M. Markushev, R. Mulyukov. Mater. Sci. Eng. A. 538, 386 (2012). Crossref
10. H. Akamatsu, T. Fujinami, Z. Horita, T. G. Langdon. Scripta Mater. 44, 759 (2001). Crossref
11. M. V. Markushev. Letters on Materials. 1(1), 36 (2011). (in Russian) [М. В. Маркушев. Письма о материалах. 1(1), 36 - 42 (2011).]. Crossref
12. O. Sh. Sitdikov, E. V. Avtokratova, R. I. Babicheva. Phys. Met. Metall. 110, 153 (2010). Crossref
13. O. Sitdikov, E. Avtokratova, T. Sakai, K. Tsuzaki. Met. Mater. Trans. A. 44. 1087 (2013). Crossref
14. Patent RF № 0002575264 C1, 20.02.2016. (in Russian) [Патент РФ № 0002575264 C1, 20.02.2016.].
15. E. Avtokratova, O. Sitdikov, O. Mukhametdinova, M. Markushev, S. V. S. N. Murty, M. J. N. V. Prasad, B. P. Kashyap. J. Alloy and Compd. 673, 182 (2016). Crossref
16. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, Y. Watanabe. Acta Mater. 56, 821 (2008). Crossref
17. Channel 5: User Manual. Oxford Instruments HKL (2007). https://caf.ua.edu/wp-content/uploads/docs/JEOL-7000F-Oxford_Channel_5_User_Manual.pdf.
18. F. J. Humphreys, M. Hatherly. Recrystallization and related annealing phenomena. Oxford, Elsevier (2004) 658 p.
19. Y. W. Riddle, T. H. Sanders. Met. Mater. Trans. 35A, 341 (2004). https://link.springer.com/content/pdf/10.1007%2Fs11661-004-0135-3.pdf.
20. A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, K. Tsuzaki. Acta Mater. 50, 1547 (2002). Crossref

Similar papers