Abstract
For cubic crystals variability of the shear modulus is analyzed. Extreme values of the shear modulus and their directions are determined. It is shown that the dimensionless shear modulus depends on the crystal orientation and a positive dimensionless elastic parameter. The value of this parameter specifies, in particular, the ratio of maximum and minimum values of the shear modulus. Lists the extreme values of shear moduli of various cubic crystals with negative Poisson’s ratio, sorted by magnitude of the elastic parameters, are given.
References (7)
1. Landolt Börstein, Group III Condensed Matter. (Springer, Berlin) 29a, 11 (1992).
2. U. Schärer, A. Jung, P. Wachter. Physica B 244, 148 (1998).
3. D.J. Gunton, G.A. Saunders. Proc. R. Soc. Lond. A343, 63(1975).
4. Yu. I. Sirotin and M. P. Shaskolskaya. Fundamentals ofCrystal Physics. Mir, Moscow (1982) 654p.
5. J.F. Nye Physical Properties of Crystals: TheirRepresentation by Tensors and Matrices. OxfordUniversity Press. (1957) 295p. [Дж. Най. Физическиесвойства кристаллов и их описание при помощи тен-зоров и матриц. ИЛ, М. (1960). 377c.].
6. M. Heyes, A. Shuvalov. J. Appl. Mech. 65, 786 (1998).
7. R.V. Goldstein, V.A. Gorodtsov, D.S. Lisovenko. DokladyPhysics. 56(7), 399 (2011) [Гольдштейн Р.В., ГородцовВ.А., Лисовенко Д.С. ДАН. 439(2), 184 (2011)].