Biomimetic preparation of ceramic alumina fibers by ultrasound-assisted impregnation of cellulose templates

M.F. Butman1, N.E. Kochkina2, V.V. Makarov1, A.B. Knot'ko3
1Ivanovo State University of Chemistry and Technology, Sheremetevsky Prospect, 7, 153000, Ivanovo
2G.A. Krestov Institute of Solution Chemistry of RAS, Akademicheskaya st., 1, 153045, Ivanovo
3Lomonosov Moscow State University, Faculty of Chemistry, Leninskiye Gory, GSP-1, 1-3, 119991, Moscow 1
Abstract
The biotemplate technique of obtaining the mesoporous alumina fibers by ultrasound-assisted precursor solution impregnation of cellulose fibrous templates has been advanced. Wood pulp cellulose sheets and cotton cloth were used as templates; Al2(SO4)3 solution was used as a precursor. The impregnation was followed by centrifugation, drying and calcination at 900 – 1200°C. The formation, structure and properties of Al2O3 fibers were studied by DSC/TG, XRD, light microscopy, SEM, N2 adsorption/desorption. It is shown that the application of ultrasound upon impregnation resulted in superior filling of a capillary pore volume of fibrous templates as well as in reduction of impregnation time. Regardless of an impregnation technique the ceramic fibers obtained at 900° C are characterized as a gamma – alumina. The increasing of the calcination temperature up to 1200° С results in transformation of the samples into alfa – alumina. The ceramic fibers formed possess a sponge texture and consist of aggregated particles. Fibrillary morphology of alumina fibers in a certain degree repeated that of the biotemplate. The ceramic fibers obtained via ultrasound-assisted impregnation manifested greater values of specific surface area and porosity with a narrower pore size distribution than those obtained by a conventional impregnation.
Received: 25 December 2014   Revised: 02 March 2015   Accepted: 03 March 2015
Views: 187   Downloads: 30
References
1.
C. Zollfrank, P. Cromme, H. Scheel, M. H. Kostova, K. Gutbrod, S. Gruber, D. Van Opdenbosch. Bioinspired, Biomimetic and Nanobiomaterials. 1 (1), 13—25 (2012). DOI: 10.1680 / bbn.11.00002
2.
T. M. Ul'yanova, N. P. Krut'ko, L. V. Titova, E. S. Paemurd, S. V. Medichenko, O. Yu. Kalmychkova. Fibre Chemistry. 37 (5), 332—337 (2005). (in Russian) [Т. М. Ульянова, Н. П. Крутько, Л. В. Титова, Е. С. Паэмурд, С. В Медиченко, О. Ю. Калмычкова. Хим. волокна. 37 (5), 16—20 (2005).] DOI: 10.1007 / s10692‑006‑0004‑5
3.
M. Patel, B. K. Padhi. J. Mater. Sci. 25 (2), 1335—1343 (1990). DOI: 10.1007 / BF00585446
4.
M. Benitez-Guerrero, L. A. Perez-Maqueda, P. E. Sanchez-Jimenez, J. Pascual-Cosp. Microporous Mesoporous Mater. 185 (1), 167—178 (2014). DOI: 10.1016 / j.micromeso.2013.11.012
5.
A. N. Shigapov, G. W. Graham, R. W. McCabe, Jr H. K. Plummer. Appl. Catal. A 210 (1–2), 287—300 (2001). DOI: 10.1016 / S0926-860X (00) 00820—6
6.
T. Fan, B. Sun, J. Gu, D. Zhang, L. W. M. Lau. Scripta Mater. 53 (7), 893—897 (2005). DOI: 10.1016 / j.scriptamat.2005.06.036
7.
K. E. Perepelkin. Structura i svoistva volokon. M. Chimiya. (1985) 208 p. (in Russian) [K. E. Перепелкин. Структура и свойства волокон. М. Химия. (1985) 208 с.]
8.
F. L. Alter Pesockii. Fhyzicheskiye metody intensifikacii krashenia i otdelki tekstilnykh materialov. M. Legkaya industriya. (1979) 71 p. (in Russian) [Ф. Л. Альтер Песоцкий. Физические методы интенсификации процессов крашения и отделки текстильных материалов. М. Легкая индустрия. (1979) 71 с.]
9.
T. J. Mason, J. P. Lorimer. Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing. Wiley-VCH. (2002) 303 p.
10.
GOST 27015—86. Paper and board. Methods for determining thickness, density and specific volume. (in Russian) [ГОСТ 27015—86. Бумага и картон. Методы определения толщины, плотности и удельного объема.]
11.
GOST 7629—93. Paper and board. Method for determination of ash. (in Russian) [ГОСТ 7629—93. Бумага и картон. Метод определения золы.]
12.
A. Majumdar, B. S. Butola, A. Srivastava. Materials and Design. 54, 295—300 (2014). DOI: 10.1016 / j.matdes.2013.07.086
13.
A. N. Braslavkii, V. V. Darvin, E. S. Roskin, S. N. Ivanova. Russ J Appl Chem. 43 (8), 1803—1810 (1970). (in Russian) [А. Н. Браславский, В. В. Дарвин, Е. С. Роскин, С. Н. Иванова. ЖПХ. 43 (8), 1803—1810 (1970).]
14.
T. J. Truex, R. H. Hammerle, R. A. Armstrong. Thermochimica Acta. 19 (3), 301—304 (1977). DOI: 10.1016 / 0040—6031 (77) 80005—1
15.
K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, et al. Pure Appl. Chem. 57, 603—619 (1985). DOI: 10.1351 / pac198557040603
Cited by
1.
Бутман М.Ф., Кочкина Н.Е., Михайлова А.Е., Овчинников Н.Л., Кнотько А.В., Известия высших учебных заведений. Серия: Химия и химическая технология 59(5), 47-53 (2016).