Dislocation mechanism of deuterium trapping and transport in tungsten under sub-threshold plasma implantation

V.I. Dubinko1, E.E. Zhurkin2, P.Y. Grigorev2, D.A. Terentyev3, van Oost4 Gvido -4, A.V. Dubinko5, S.V. Dmitriev6
1National Science Center "Kharkov Physical-Technical Institute”, Kharkov 61108, Ukraine
2Saint-Petersburg State Polytechnic University, St-Petersburg 195251, Russia
3SCK•CEN, Boeretang 200, 2400 Mol, Belgium
4Department of Applied Physics, Ghent University, 9000 Ghent, Belgium
5Institute of Electrophysics and Radiation Technologies NASU, Kharkov 61002, Ukraine
6Institute for Metals Superplasticity Problems RAS, Khalturin St. 39, 450001Ufa, Russia
Abstract
We develop a model for D retention in W alloys based on deuterium trapping at dislocations and transport to the surface via the dislocation network with parameters evalu-ated by ab initio calculations. The model can explain ex-perimentally observed trends of D retention in W under sub-threshold implantation, which does not produce stable defects that act as D traps in conventional models. Satura-tion of D retention with implantation dose and effects due to alloying W with Ta are evaluated and compared with experimental observations under low and high flux plasma implantation conditions.
Accepted: 12 October 2013
Views: 57   Downloads: 10
References
1.
R. Clark, D. Reiter, Nuclear Fusion Research, Springer,(2005).
2.
T. Ahlgren, K. Heinola, K. Vortler, J. Keinonen. 427, 152(2012).
3.
D.F. Johnson, E.A. Carter. J. Mater. Res. 25, 315 (2010).
4.
K. O. E. Henriksson,K. Nordlund, A. Krasheninnikov, andJ. Keinonen. Fusion Science and Technology 50, 163113 (2006).
5.
Y. Zayachuk, M.H.J. ’t Hoen, P.A. Zeijlmans vanEmmichoven, I. Uytdenhouwen and G. van Oost, Nucl.Fusion 52, 103021 (2012).
6.
Y. Zayachuk, M. H. J. ‘t Hoen, P. A. Zeijlmans vanEmmichoven, D. Terentyev, I. Uytdenhouwen, G. vanOost. Nuclear Fusion 53, 1 (2013).
7.
D. Terentyev, A. Bakaev, V. Dubinko, D. Van Neck and G.Van Oost, Phys. Rev. B, to be published.
8.
A.I. Ryazanov, G.A. Arutyunova, V. A. Borodin, Yu.N.Sikursky, V.I. Chuev, J. Nuclear Materials. 110, 62 (1982).
9.
V. I. Dubinko, S. Hu, Yu Li, C. H. Henager, Jr. and R.J.Kurtz. Philosophical Magazine 92 (33), 4113 (2012).
10.
K. Schmid, V. Rieger, A. Manhard. J. Nuclear Materials.426, 247 (2012).
11.
V. I. Dubinko, Radiat. Eff. and Defects in Solids. 160, 85(2005).
12.
V.I. Dubinko, V.F. Klepikov, J. Nuclear Materials. 362, 146(2007).
13.
V. I. Dubinko, A. V. Dubinko. Nuclear Inst. and Methodsin Physics Research, B 303, 133 (2013).
14.
M. Haas, V. Hizhnyakov, A. Shelkan, M. Klopov, A. J.Sievers. Phys. Rev. B 84, 14430 (2011).
Cited by
1.
Кистанов А.А., Семенов А.С., Дмитриев С.В., Журнал экспериментальной и теоретической физики 146(4), 869-875 (2014).
2.
Кистанов А.А., Семенов А.С., Фундаментальные проблемы современного материаловедения 11(2), 241-244 (2014).