CHEMICAL AND NUCLEAR CATALYSIS DRIVEN BY LOCALIZED ANHARMONIC VIBRATIONS

V.I. Dubinko, D.V. Laptev show affiliations and emails
Accepted  25 January 2016
Citation: V.I. Dubinko, D.V. Laptev. CHEMICAL AND NUCLEAR CATALYSIS DRIVEN BY LOCALIZED ANHARMONIC VIBRATIONS. Lett. Mater., 2016, 6(1) 16-21
BibTex   https://doi.org/10.22226/2410-3535-2016-1-16-21

Abstract

In many-body nonlinear systems with sufficient anharmonicity, a special kind of lattice vibrations, namely, Localized Anharmonic Vibrations (LAV) can be excited either thermally or by external triggering, in which the amplitude of atomic oscillations greatly exceeds that of harmonic oscillations (phonons) that determine the system temperature. Coherency and persistence of LAV may have drastic effect on chemical and nuclear reaction rates due to time-periodic modulation of reaction sites. One example is a strong acceleration of chemical reaction rates driven by thermally-activated ‘jumps’ over the reaction barrier due to the time-periodic modulation of the barrier height in the LAV vicinity. At sufficiently low temperatures, the reaction rate is controlled by quantum tunneling through the barrier rather than by classical jumping over it. A giant increase of sub-barrier transparency was demonstrated for a parabolic potential well with the time-periodic eigenfrequency, when the modulation frequency exceeds the eigenfrequency by a factor of ~2 (parametric regime). Such regime can be realized for a hydrogen or deuterium atom in metal hydrides/deuterides, such as NiH or PdD, in the vicinity of LAV. We present an analytical solution of the Schrödinger equation for a nonstationary harmonic oscillator, analyze the parametric regime in details and discuss its applications to the tunnel effect and to D-D fusion in PdD lattice. We obtain simple analytical expressions for the increase of amplitude and energy of zero-point oscillations (ZPO) induced by the parametric modulation. Based on that, we demonstrate a drastic increase of the D-D fusion rate with increasing number of modulation periods evaluated in the framework of Schwinger model, which takes into account suppression of the Coulomb barrier due to lattice vibrations.

References (23)

1. G. Ertl, H. Knozinger, F. Schuth, F., J. Weitkamp (eds) Handbook of Heterogeneous Catalysis 2nd edn, Wiley-VCH (2008).
2. R. S. Swathi, and K. L. Sebastian, Molecular mechanism of heterogeneous catalysis. Resonance Vol. 13 Issue 6, (2008) 548 - 560.
3. V. I. Dubinko, P. A. Selyshchev, and J. F. R. Archilla, Phys. Rev. E 83, No 4 (2011). Crossref
4. V. I. Dubinko, F. Piazza, Letters on Materials 4 (4), 273 - 278 (2014).
5. V. I. Dubinko, A. V. Dubinko, Nuclear Inst. and Methods in Physics Research, B 303, 133 - 135 (2013).
6. V. I. Dubinko, J. Condensed Matter Nucl. Sci., 14, 87 - 107 (2014).
7. V. I. Dubinko, Letters on Materials, 5, 97 - 104 (2015).
8. V. Dubinko, Nuclear catalysis mediated by localized anharmonic vibrations, http://arxiv.org / abs / 1510.06081.
9. R. P. Bell. The Proton in Chemistry. Second Edition, University of Stirling. Cornell. Universitv Press. Ithaca. New York. 1973.
10. E. Schrödinger, Ber. Kgl. Akad. Wiss., Berlin, S. 296 - 303 (1930).
11. H. P. Robertson, Phys. Rev. 34, 163 - 164 (1930).
12. V. V. Dodonov, V. I. Man’ko, Phys. Lett. A 79 (2 / 3), 150 - 152 (1980).
13. V. I. Vysotskii, M. V. Vysotskyy, Eur. Phys. J. A (2013). Crossref
14. Goldman, V. D. Krivchenkov. Collection of problems in quantum mechanics. Moscow. (1957) 275p. (in Russian).
15. Quantum Harmonic Oscillator: Wavefunctions http://hyperphysics.phy-astr.gsu.edu / hbase / quantum / hosc5.html.
16. E. Kamke. Handbook of Ordinary Differential Equations. Moskow. (1976) 576p. (in Russian).
17. Quantum Harmonic Oscillator: Energy Minimum from Uncertainty Principle http://hyperphysics.phy-astr.gsu.edu / hbase / quantum / hosc4.html.
18. R. H. Parmenter, W. E. Lamb, Proc. Natl. Acad. Sci. USA, 86, 8614 - 8617 (1989).
19. J. M. Rowe, J. J. Rush, H. G. Smith, M. Mostoller, H. E. Flotow, Phys. Rev. Lett. 33, 1297 - 1300 (1974).
20. J. Kasagi, Screening Potential for nuclear Reactions in Condensed Matter. in ICCF-14 International Conference on Condensed Matter Nuclear Science (2008).
21. J. Schwinger, Nuclear Energy in an Atomic Lattice I, Z. Phys. D 15, 221 (1990).
22. J. Schwinger, J. Nuclear Energy in an Atomic Lattice. Proc. Cold Fusion Conf. Salt Lake City, 130 (1990).
23. I. P. Chernov, Yu. M. Koroteev, V. M. Silkin, Yu. I. Tyurin, Proc. 8th Int. Workshop on Anomalies in Hydrogen / Deuterium Loaded Metals, p. 27 - 37 (2007).

Cited by (8)

1.
P. V. Zakharov, M. D. Starostenkov, A. M. Eremin, E. A. Korznikova, S. V. Dmitriev. Phys. Solid State. 59(2), 223 (2017). Crossref
2.
A. Rivière, S. Lepri, D. Colognesi, F. Piazza. Phys. Rev. B. 99(2) (2019). Crossref
3.
V. Dubinko, D. Laptev, D. Terentyev, Sergey V. Dmitriev, K. Irwin. Computational Materials Science. 158, 389 (2019). Crossref
4.
Vladimir I. Dubinko, Alexander S. Mazmanishvili, Denis V. Laptev, Juan F. R. Archilla. J. Micromech. Mol. Phys. 01(02), 1650010 (2016). Crossref
5.
V. Dubinko. J. Micromech. Mol. Phys. 01(01), 1650006 (2016). Crossref
6.
V. Dubinko, D. Laptiev, D. Terentyev, S. Dmitriev, K. Irwin. Computational Materials Science. 177, 109582 (2020). Crossref
7.
M. Kashchenko, V. Balakirev, N. Kashchenko, М. Smirnov, Y. Chepelev, V. Ilyushin, N. Nikolaeva, V. Pushin. Lett. Mater. 10(4), 486 (2020). Crossref
8.
?.S. Mazmanishvili. Problems of Atomic Science and Technology. , 100 (2019). Crossref

Similar papers