The role of the electronic current component in the formation of a quasi-molecular state leading to the synthesis of elements

M.P. Kashchenko, N.M. Kashchenko show affiliations and emails
Received 27 February 2020; Accepted 16 April 2020;
This paper is written in Russian
Citation: M.P. Kashchenko, N.M. Kashchenko. The role of the electronic current component in the formation of a quasi-molecular state leading to the synthesis of elements. Lett. Mater., 2020, 10(3) 266-271
BibTex   https://doi.org/10.22226/2410-3535-2020-3-266-271

Abstract

Model potential for evaluating the transparency coefficient during tunneling of an electron with energy E through the Coulomb barrier of the target electron (r0 ~ 10-15 m, r1 >> r0)It was previously shown that in the process of plasma water electrolysis, a synthesis of chemical elements is observed indicating the existence of low-energy nuclear fusion reactions. In the traditional consideration, for guaranteed fusion of nuclei, their approach to a distance of the order of the nucleus size Rn ~10−15 m is required. An additional possibility is to use electromagnetic interaction to achieve an intermediate quasimolecular state with a critical internuclear distance of Rc~10−13 m, which is smaller than Bohr radius RB ≈ 5 ∙10−11 m, but larger Rn. When Rc is reached, the process of attraction of the nuclei becomes possible due to the exchange of virtual electron-positron pairs, the efficiency of which increases with the approach of the nuclei. Since in the framework of the hadronic mechanics of Santilli, the π0‑meson is interpreted as a result of the contact interaction of an electron and a positron, the stage of approach of the nuclei from Rс to Rn due to the exchange of quasipositroniums can be considered as an extension of the action of the Yukawa mechanism on scales up to Rс. Thus, the approach of nuclei to Rc plays a key role in the implementation of nuclear fusion. A similar approach is possible if a high electron density arises between the nuclei in the process of inelastic collision of ions (atoms). In the model of an intermediate quasimolecular state, an increase in the internuclear density of electrons is considered to be a consequence of the formation of pair Bose-type electronic states arising from the contact interaction (attraction) of electrons at the femt scale as shown in hadron mechanics. Therefore, the electronic component of the current during the electrolysis of solutions should contribute to the synthesis of elements by initiating the formation of Bose electron pairs in tunable shells of ions (atoms). This conclusion is confirmed by estimates of the transparency coefficient for electron tunneling through the Coulomb barrier. The transparency coefficient for the tunneling of hydrogen nuclei in muon catalysis is estimated. The possibility of the occurrence of simple nuclear reactions during the interaction of the initial nuclei with quasineutrons is noted.

References (21)

1. S. S. Gershtein, Yu. V. Petrov, L. I. Ponomarev. Sov. Phys. Usp. 33 (8), 591 (1990). Crossref
2. L. I. Men’shikov, L. N. Somov. Sov. Phys. Usp. 33 (8), 616 (1990). Crossref
3. M. P. Kashchenko, V. F. Balakirev. Letters on materials. 7 (4), 380 (2017). Crossref
4. V. V. Krymskiy, V. F. Balakirev. Doklady Physical Chemistry. 385 (4-6), 197 (2002). Crossref
5. V. V. Krymskiy, V. F. Balakirev, N. V. Plotnikova. J. Chem. Chem. Eng. 9 (3), 211 (2015). Crossref
6. V. F. Balakirev, V. V. Krymskiy, B. V. Bolotov et al. Interconversion of chemical elements. Ekaterinburg, UB RAS (2003) 97 p. (in Russian) [В. Ф. Балакирев, В. Крымский, Б. В. Болотов и др. Взаимопревращения химических элементов. Екатеринбург, УрО РАН (2003) 97 с.].
7. V. A. Pan'kov, B. P. Kuzmin. Actual problems of modern science. 5, 117 (2008). (in Russian) [В. А. Паньков, Б. П. Кузьмин. Актуальные проблемы современной науки. 5, 117 (2008).].
8. M. P. Kashchenko, V. F. Balakirev. Letters on materials. 8 (2), 152 (2018). (in Russian) [М. П. Кащенко, В. Ф. Балакирев. Письма о материалах. 8 (2), 152 (2018).]. Crossref
9. R. M. Santilli. Foundations of Hadronic Chemistry. With Applications to New Clean Energies and Fuels. London, Kluwer Academic Publishers (2001) 554 p.
10. L. D. Landau, E. M. Lifshitz. Quantum Mechanics: Non-Relativistic Theory, 3rd ed. Pergamon Press Ltd., Oxford (1977) 667р.
11. H. Yukawa. Proc. Phys. Math. Soc. Japan. 17 (2), 48 (1935).
12. M. P. Kashchenko, V. F. Balakirev, M. B. Smirnov, Yu. L. Chepelev, V. V. Ilushin, N. V. Nikolaeva, V. G. Pushin. International conference “Materials science of the future: research, development, scientific training”. Nizhni Novgorod (2019) p. 40.
13. M. P. Kashchenko, V. F. Balakirev, M. B. Smirnov, Yu. L. Chepelev, V. V. Ilushin, N. V. Nikolaeva, V. G. Pushin. The thirteenth international Ural seminar “Radiation damage physics of metals and alloys”. Kyshtym, Russia (2019) p. 68. (in Russian) [М. П. Кащенко, В. Ф. Балакирев, М. Б. Смирнов, Ю. Л. Чепелев, В. В. Илюшин, Н. В. Николаева, В. Г. Пушин. Тринадцатый международный уральский семинар «Радиационная физика металлов и сплавов». Кыштым, Россия (2019) c. 68.].
14. M. P. Kashchenko, V. F. Balakirev, N. M. Kashchenko, M. B. Smirnov, Yu. L. Chepelev, V. V. Ilushin, N. V. Nikolaeva, V. G. Pushin. Letters on materials. 10 (1), 66 (2020). (in Russian) [М. П. Кащенко, В. Ф. Балакирев, Н. М. Кащенко, М. Б. Смирнов, Ю. Л. Чепелев, В. В. Илюшин, Н. В. Николаева, В. Г. Пушин. Письма о материалах. 10 (1), 66 (2020).]. Crossref
15. T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L. G. M. Pettersson, A. Nilsson, S. Shin. Chem. Phys. Lett. 460, 387 (2008). Crossref
16. C. Huang, K. T. Wikfeldt, T. Tokushima, D. Nordlund, Y. Harada, U. Bergmann, M. Niebuhr, T. M. Weiss, Y. Horikawa, M. Leetmaa, M. P. Ljungberg, O. Takahashi, A. Lenz, L. Ojamae, A. P. Lyubartsev, S. Shin, L. G. M. Pettersson, A. Nilsson. PNAS. 106, 15214 (2009). Crossref
17. M. P. Kashchenko, N. M. Kashchenko. Letters on materials. 9 (3), 316 (2019). (in Russian) [М. П. Кащенко, Н. М. Кащенко. Письма о материалах. 9 (3), 316 (2019).]. Crossref
18. R. M. Santilli. International Journal of Applied Physics and Mathematics. 9 (2), 72 (2019). Crossref
19. R. Norman, A. A. Bhalekar, S. Beghella, B. B. Buckley, J. Dunning-Davies, J. Rak, R. M. Santilli. American Journal of Modern Physics. 6 (4-1), 85 (2017). Crossref
20. R. L. Mills. The Grand Unified Theory of Classical Physics. BlackLight Power, Inc., Cranbury, New Jersey (2011).
21. R. Mills, Y. Lu, R. Frazer. Chinese Journal of Physics. 56, 1667 (2018). Crossref

Similar papers