Multimethodological approach to the study of carbide particle dimensions in high-strength steel

M.L. Fedoseev, S.N. Petrov, A.K. Islamov, N.F. Drozdova, T.A. Lychagina, D.I. Nikolaev show affiliations and emails
Received: 14 May 2018; Revised: 06 July 2018; Accepted: 24 July 2018
This paper is written in Russian
Citation: M.L. Fedoseev, S.N. Petrov, A.K. Islamov, N.F. Drozdova, T.A. Lychagina, D.I. Nikolaev. Multimethodological approach to the study of carbide particle dimensions in high-strength steel. Lett. Mater., 2018, 8(3) 323-328


The research of dispersed precipitates in high-strength medium-carbon steel after tempering in the temperature range up to 600 °C was carried out. Amount of retained austenite decreases and cementite is forming instead of austenite by growth of the tempering temperature.An important task in creating new materials is determining the structure (substructure). In this study a number of methods, which supplement each other were used. Its allow determining the size, morphology, phase composition and volume fraction of dispersed particles in high-strength medium-carbon steel after tempering in the temperature range up to 600 °C. Integral methods were used: small-angle neutron scattering, X-ray and neutron diffraction. The use of neutrons along with X-ray sources is due to a number of inherent features. Advantages of neutrons include the ability to use large samples, so the maximum grain size to obtain statistically reliable results are significantly increased, also simplified getting texture data. The disadvantages include lower resolution and complex equipment. The combined use of different techniques made it possible to establish the kinetics of the dispersed particles changes during steel tempering. The increase in tempering temperature until 300 °C results in a decrease in the amount of retained austenite. At the tempering temperature of 300 °C, the growth of Fe3C particles begins in place of retained austenite and continues up to 600 °C (hereinafter, not studied).The phases of retained austenite and cementite were identified by means of neutron diffraction, while changes in its sizes were obtained by means of small-angle neutron scattering. The results obtained do not contradict the previously obtained transmission electron microscopy data. A comprehensive study using diffraction and scattering methods of X-rays and neutrons allow to obtain information about disperse particles in steels.

References (20)

1. F. Cousin. Small angle neutron scattering. EPJ Web of Conferences 104, 01004 (2015). Crossref
2. V. V. Ryabov, E. I. Khlusova, S. A. Golosienko, G. D. Motovilina. Metallurg. 6, 59 (2015). (in Russian) [В. В. Рябов, Е. И. Хлусова, С. А. Голосиенко, Г. Д. Мотовилина. Металлург. 6, 59 (2015).].
3. V. V. Ryabov, G. D. Motovilina, E. I. Khlusova, S. A. Sidorov. Metallurg. 8, 72 (2016). (in Russian) [В. В. Рябов, Г. Д. Мотовилина, Е. И. Хлусова, С. А. Сидоров. Металлург. 8, 72 (2016).].
4. V. V. Ryabov. Razrabotka iznosostoykoy stali s predelom tekuchesti 1200 - 1700 MPa dlya detaley rabochih organov pochvoobrabatyvayuschih mashin: Dissertacija na soiskanie stepeni kandidata tehnicheskih nauk. St. Petersburg. (2016) 235 p. (in Russian) [В. В. Рябов. Разработка износостойкой стали с пределом текучести 1200 - 1700 МПа для деталей рабочих органов почвообрабатывающих машин: дисс. канд. техн. наук. Санкт-Петербург. (2016) 235 с.].
5. A. Yu. Izmailov, S. A. Sidorov, V. K. Khoroshenkov, E. I. Khlusova, V. V. Ryabov. Metal Science and Heat Treatment. 4(742), 13 (2017). (in Russian) [А. Ю. Измайлов, С. А. Сидоров, В. К. Хорошенков, Е. И. Хлусова, В. В. Рябов. Металловедение и термическая обработка металлов. 4(742), 13 (2017).].
6. J. Pacyna Journal of Achievements in Materials and Manufacturing Engineering. 46, 7 (2011).
7. М. S. Mikhailov, V. V. Ryabov. Material Science and Technology News. 19(1), 3 (2016). (in Russian) [М. С. Михайлов, В. В. Рябов. Новости материаловедения. Наука и техника. 19(1), 3 (2016).].
8. V. V. Ryabov, Т. V. Knyazyuk, M. S. Mikhailov, G. D. Motovilina, E. I. Khlusova. Voprosy Materialovedeniya (Problems of Materials Science). 86(2), 7 (2016). (in Russian) [В. В. Рябов, Т. В. Князюк, М. С. Михайлов, Г. Д. Мотовилина, Е. И. Хлусова. Вопросы материаловедения. 86(2), 7 (2016).].
9. V. N. Shvetsov. Quantum Beam Science. 6(1), 1 (2017). Crossref
10. R. Keppler, K. Ullemeyer, J. H. Behrmann, M. Stipp. Journal of Applied Crystallography. 47, 1520 (2014). Crossref
11. D. I. Nikolayev, T. A. Lychagina, A. V. Nikishin, V. V. Yudin. Solid State Phenomena. 105, 77 (2005). Crossref
12. T. Lychagina, D. Nikolayev, A. Sanin, J. Tatarko, K. Ullemeyer. 17th International Conference on Textures of Materials (ICOTOM 17). 82(012107), 1 (2015). Crossref
13. Y. M. Ostanevich. Macromol. Chem. Macromol. Symp. 15, 91 (1988). Crossref
14. A. I. Kuklin, A. K. Islamov, V. I. Gordeliy. Neutron News. 3(16), 16 (2005). Crossref
15. A. G. Soloviev, T. M. Solovieva, A. V. Stadnik, A. K. Islamov, A. I. Kuklin. JINR Communication. 10, 86 (2003).
16. A. G. Soloviev, T. M. Solovjeva, O. I. Ivankov, D. V. Soloviov, A. V. Rogachev, A. I. Kuklin. IOP Conf. Series: Journal of Physics: Conf. Series - YuMO2016. 848(012020), 1 (2017). Crossref
17. M. L. Bernshtejn, L. M. Kaputkina, S. D. Prokoshkin. Tempering of steel. Moscow, MISIS (1997) 336 p. (in Russian) [М. Л. Бернштейн, Л. М. Капуткина, С. Д. Прокошкин. Отпуск стали. Москва, МИСИС (1997) 336 с.].
18. M. A. Smirnov, V. M. Schastlivcev, L. G. Zhuravlev. Basics of heat treatment of steel. Moscow, Nauka & Technology (2002) 519 p. (in Russian) [М. А. Смирнов, В. М. Счастливцев, Л. Г. Журавлев. Основы термической обработки стали. Москва, Наука и технологии (2002) 519 c.].
19. E. M. Grinberg, A. A. Alekseev, A. V. Budarina, M. S. Salomatnikov. Izvestiya Tula State University. Technical science. 5.2, 251 (2015) (in Russian) [Е. М. Гринберг, А. А. Алексеев, А. В. Бударина, М. С. Саломатников. Известия ТулГУ. Технические науки. 5.2, 251 (2015).].
20. T. A. Lychagina, A. A. Zisman, E. A. Yashina, D. I. Nikolayev. Advanced Engineering Materials. 1700559, 1 (2017). Crossref

Cited by (3)

S. N. Petrov, N. F. Drozdova, M. L. Fedoseev, M. S. Mikhailov, E. V. Svyatysheva, A. Kh. Islamov. Met Sci Heat Treat. 62(1-2), 95 (2020). Crossref
M. Fedoseev, S. Petrov, M. Mikhaylov, A. Islamov, V. Ryabov. J. Phys.: Conf. Ser. 2182(1), 012072 (2022). Crossref
M. L. Fedoseev, S. N. Petrov, D. I. Nikolaev, A. I. Beskrovny, T. A. Lychagina. Vopr. materialoved. , 07 (2022). Crossref

Similar papers