A study of retained austenite transformation during high-strength Cr-Ni-Mo-V steel tempering

A. Ziza, M. Mikhailov, V. Tsukanov, D. Nikolaev, T. Lychagina show affiliations and emails
Received 11 December 2017; Accepted 29 January 2018;
This paper is written in Russian
Citation: A. Ziza, M. Mikhailov, V. Tsukanov, D. Nikolaev, T. Lychagina. A study of retained austenite transformation during high-strength Cr-Ni-Mo-V steel tempering. Lett. Mater., 2018, 8(2) 146-151
BibTex   https://doi.org/10.22226/2410-3535-2018-2-146-151

Abstract

TEM fine structure 0,3C-Cr-3Ni-Mo-V steel after quenching: (a) – lath martensite; (b) – dark field image of retained austenite; (c) – self-tempered martensite; (d) – dark field image of carbides.In this paper the amount of retained austenite after quenching and quenching and tempering (including double tempering) of products of small cross section (less than 25 mm) from structural high-strength medium-carbon 0,3C-Cr-3Ni-Mo-V steel is determined by X-ray phase analysis and neutron diffraction method. In the samples after quenching, the amount of retained austenite is ~3 %, In the samples after quenching and tempering is less than 0,5 %. The character of the distribution of retained austenite and morphology of martensite after quenching as well as quenching and high tempering were studied by transmission electron microscopy. It was shown, that after quenching, the retained austenite is located between the martensite laths. The structure of the quenched steel is dominated by the martensite of the lath morphology, which amount is 90-95 %, the amount of self-tempered martensite is small is 5-10 %. The transformation of retained austenite during steel high tempering was studied by high-speed dilatometer. It has been established, that retained austenite transforms into a mixture of carbides and α-phase during heating for tempering in some cases and turning into secondary martensite upon cooling from tempering temperature in the other. It is shown that the double tempering has little effect on the amount of the retained austenite and on the level of dislocation density, contributing to a change in shape of carbides from lamellar to globular and diminishing their dimensions.

References (14)

1. V. V. Tsukanov. Modern steel and technologies in power engineering. Saint-Peterburg, Professional (2014) 464 p. (in Russian) [В. В. Цуканов. Современные стали и технологии в энергомашиностроении. Санкт-Петербург, Профессионал (2014) 464 с.].
2. V. D. Sadovskii. Structural inheritance in steel. Moscow, Metallurgiya (1973) 215 p. (in Russian) [В. Д. Садовский. Структурная наследственность в стали. Москва, Металлургия (1973) 215 с.].
3. I. I. Novikov. Theory of heat treatment of metals. Moscow, Metallurgiya (1978) 392 p. (in Russian) [И. И. Новиков. Теория термической обработки металлов. Москва, Металлургия (1978) 392 с.].
4. V. A. Lobodyuk, E. I. Estrin. Martensitic transformations. Moscow, Fizmatlit (2009) 352 p. (in Russian) [В. А. Лободюк, Э. И. Эстрин Мартенситные превращения. Москва, Физматлит (2009) 352 с.].
5. A. U. Kaletin. The influence of retained austenite on structure and properties of structural steels after high tempering: Abstract of Doctoral thesis. Chelyabinsk (1985) 19 p. (in Russian) [А. Ю. Калетин. Влияние остаточного аустенита на структуру и свойства конструкционных сталей после высокого отпуска: Автореферат диссертации на соискание ученой степени кандидата технических наук. Челябинск (1985) 19 c.].
6. T. Lychagina, A. Zisman, E. Yashina, D. Nikolaev. Advanced Engineering Materials. 1700559, (2017). Crossref
7. V. V. Rybin, A. S. Rubtsov, E. V. Nesterova. Zavodskaia laboratoriia. 5, 21 (1982). (in Russian) [В. В. Рыбин, А. С. Рубцов, Е. В. Нестерова. Заводская лаборатория. 5, 21 (1982).].
8. T. G. Semicheva, E. I. Khlusova, L. G. Sherokhina. Problems of Materials Science. 2(42), 69 (2005). (in Russian) [Т. Г. Семичева, Е. И. Хлусова, Л. Г. Шерохина. Вопросы материаловедения. 2(42), 69 (2005).].
9. A. A. Popov, L. E. Popova. Isotermic and thermokinetic diagrams of ausnenite. Moscow, Metallurgiya (1965) 496 p. (in Russian) [А. А. Попов, Л. Е. Попова. Изотермические и термокинетические диаграммы распада переохлажденного аустенита. Москва, Металлургия (1965) 496 с.].
10. H. K. D. H. Bhadeshia. Bainite in steels. Transformations, Microstructure and Properties, 2nd ed. London, IOM Communications (2001) 454 p.
11. I. V. Tihonova, E. M. Grinderg, E. V. Markova. Izvestija TulGU. Technical science. 1, 111 (2012). (in Russian) [И. В. Тихонова, Е. М. Гринберг, Е. В. Маркова. Известия ТулГУ. Технические науки. 1, 111 (2012).].
12. C. Gupta, G. K. Dey, J. K. Chakravartty et al. Scripta Materialia. 53, 559 (2005).
13. J. C. Hell, M. Dehmas, S. Allain, J. M. Prado, A. Hazotte. ISIJ International. 51(10), 1724 (2011).
14. V. V. Tsukanov, A. I. Ziza. Problems of Materials Sience. 3(83), 7 (2015). (in Russian) [В. В. Цуканов, А. И. Зиза. Вопросы материаловедения. 3(83), 7 (2015).].

Cited by (3)

1.
Darina A. Konchus, Aleksei V. Sivenkov. MSF. 1022, 112 (2021). Crossref
2.
S. Bobyr, E. Parusov, T. Golubenko, I. Chuiko. Metallofiz. Noveishie Tekhnol. 44(1), 31 (2022). Crossref
3.
Y. Li, T. Xu, X. Cao, Z. Wu, J. Fan, C. Hu, H. Dong. Materials. 17(4), 867 (2024). Crossref

Similar papers