The study of technological properties of the titanium alloy Ti-6Al-4V. Part 2

R.V. Safiullin, M.H. Muhametrahimov, S.P. Malycheva, A.R. Safiullin, A.N. Kozlov, A.V. Berestov, S.A. Harin, M. Morozov show affiliations and emails
Received 18 May 2018; Accepted 30 July 2018;
This paper is written in Russian
Citation: R.V. Safiullin, M.H. Muhametrahimov, S.P. Malycheva, A.R. Safiullin, A.N. Kozlov, A.V. Berestov, S.A. Harin, M. Morozov. The study of technological properties of the titanium alloy Ti-6Al-4V. Part 2. Lett. Mater., 2018, 8(3) 329-334
BibTex   https://doi.org/10.22226/2410-3535-2018-3-329-334

Abstract

The technological properties of the titanium alloy VT6 were studied. It is established that it can be successfully used in SPF/DB technology under conditions of low-temperature superplasticity at temperatures of 750-800° C. The model of the hollow blade of a three-layer structure was made from this alloy.The second part of the article describes the results of the research of technological properties (formability and weldability in the solid state) of a sheet titanium alloy VT6 (Ti-6Al-4V) with improved superplastic properties at low temperatures. In the studies of formability of sheet blanks, the radius of curvature R and the average thickness S in the spherical portion of the formed samples were determined. The ratio R / S was calculated and is represented as a function of the forming time. The presented dependences show that the values of the optimal angle of the conical matrix depend on the forming temperature. At a temperature of 750ºC, the R/S ratio decreases, which indicates the need for some decrease in the angle α, and at 800ºC - on the contrary. In general, it should be noted that the alloy under investigation has sufficient formability at temperatures of 750 and 800 ° C, corresponding to the temperatures of manifestation of low-temperature superplasticity. The conducted studies of weldability in the solid state of sheet blanks made it possible to establish that with an increase in the welding temperature from 650 to 800 ° C, the average grain size increases from 1 μm to 8 μm, while the relative pore length in the solid-phase compound zone decreases from 0.21 at T = 650 ° C to 0,04 at 800°C. Mechanical shear tests of welded samples made it possible to establish that the shear strength of welded joints is from 91.4 to 96.9% of the strength of the base material, depending on the welding temperature. As a result of the conducted research of technological properties it is established that the titanium alloy VT6 can be successfully used in SPF/PW technology under conditions of low-temperature superplasticity at temperatures of 750-800 ° С. Confirmation of this fact is the successful manufacture of hollow blade model of a three-layer goffered structure.

References (20)

1. E. N. Petrov, V. V. Rodionov, E. N. Kuzmin, R. Ya. Lutfullin, R. V. Safiullin. Honeycomb. Sneginsk (2008) 176 p. (in Russian) [Е. Н. Петров, В. В. Родионов, Э. Н. Кузьмин, Р. Я. Лутфуллин, Р. В. Сафиуллин. Ячеистые конструкции. Снежинск, Изд-во РФЯЦ-ВНИИТФ (2008) 176 с.].
2. G. B. Stroganov, I. I. Novikov, V. V. Boizov, V. F. Pshirkov. Ispolzovanie sverhplastichnosti v obrabotke metallov davleniem. Moscow, Mashinostroenie (1989) 108 p. (in Russian) [Строганов Г. Б., Новиков И. И., Бойцов В. В., Пширков В. Ф. Использование сверхпластичности в обработке металлов давлением. Москва, Машиностроение (1989) 132с.].
3. D. Stephen. AGARD Lecture Series. 154(7), 1 (1987).
4. N. Peiton, K. Gamilton. Sverhplasticheskaja formovka konstrukzionnih splavov. Moscow, Metallurgiya (1985) 312 p. (in Russian) [Н. Пейтон, К. Гамильтон Сверхпластическая формовка конструкционных сплавов. Москва, Металлургия (1985) 312 c.].
5. R. V Safiullin. In: Proceedings of 3rd European Conference on Superplastic Forming Euro-SPF 2004. France (2004) P. 167.
6. R. Safiullin. Materials Science Forum. 735, 409 (2013).
7. D. Stephen. In: Proc. Tech. Program International Conference. USA 2. (1986). P 1087 - 1106.
8. C. H. Hamilton. AGARD Lecture Series. 154(2), 1 (1987).
9. R. V. Safiullin. Letters on Materials. 2(1), 32 (2012). (in Russian) [Р. В. Сафиуллин. Письма о материалах. 2(1), 32 (2012).]. Crossref
10. R. V. Safiullin. Letters on Materials. 2(1), 36 (2012). (in Russian) [Р. В. Сафиуллин. Письма о материалах. 2(1), 36 (2012).]. Crossref
11. P. N. Comley. Journal of Materials Engineering and Performance. 17, 183 (2008).
12. D. Sanders, L. Hefti, A. Bryant, S. Zeng, H. Guo. In: Presentation on Euro-SPF-2011 conference. Great Brittan (2011).
13. P. N. Comley. Mater. Sci. Forum. 447 - 448, 233 (2004).
14. O. A. Kaibyshev, R. V. Safiullin, R. Ya. Lutfullin, O. R. Valiakhmetov, R. M. Galeyev, A. Dutta, T. Raghu, G. G. Saha. J. Mat. Sci. and Techn. 22, 343 (2006).
15. О. R. Valiakhmetov, R. M. Galeyev, V. A. Ivanko, R. M. Imayev, A. A. Inozemzev, N. L. Koksharov, A. A. Kruglov, R. Ya. Lutfullin, R. R. Mulykov, R. V. Safiullin, S. A. Harin. Rossiiskie nanotehnologii. 4(11-12), 56 (2009). (in Russian) [О. Р. Валиахметов, Р. М. Галеев, В. А. Иванько, Р. М. Имаев, А. А. Иноземцев, Н. Л. Кокшаров, А. А. Круглов, Р. Я. Лутфуллин, Р. Р. Мулюков, Р. В. Сафиуллин, С. А. Харин. Российские Нанотехнологии. 4(11-12), 56 (2009).].
16. L. D. Hefti. Journal of Materials Engineering and Performance. 17, 178 (2008).
17. B. Swale. In: Proceedings of 3rd European Conference on Superplastic Forming “Euro-SPF 2004”. France (2004) P. 39.
18. R. V. Safiullin R. M. Galeyev, M. H. Myhametrahimov, R. G. Hazgaliev, S. P. Malysheva, R. R. Mulykov, A. N. Kozlov, A. V. Berestov, M. O. Leder. Titan. 3(53), 47 (2016). (in Russian) [Р. В. Сафиуллин, Р. М. Галеев, М. Х. Мухаметрахимов, Р. Г. Хазгалиев, С. П. Малышева, Р. Р. Мулюков, А. Н. Козлов, А. В. Берестов, М. О. Ледер. Титан. 3(53), 47 (2016).].
19. R. V Safiullin, A. R. Safiullin, S. P. Malysheva, A. N. Kozlov, A. V. Berestov, Galeyev, O. R. Valiakhmetov. Letters on Materials. 6(4), 281 (2016). (in Russian) [Сафиуллин Р. В., Сафиуллин А. Р., Малышева С. П., Козлов А. Н., Берестов А. В., Галеев Р. М., Валиахметов О. Р. Письма о материалах. 6(4), 281 (2016).]. Crossref
20. R. J. Lederich, S. M. L. Sastry, M. Hayse, T. L. Mackay. Journal of Metals. 8, 16 (1982).

Cited by (6)

1.
A. Sarkeeva. Lett. Mater. 10(3), 345 (2020). Crossref
2.
A. S. Gornakova, S. I. Prokofjev. J Mater Sci. 55(22), 9225 (2020). Crossref
3.
R. Lutfullin, M. Mukhametrahimov, E. Galieva. IOP Conf. Ser.: Mater. Sci. Eng. 1008(1), 012011 (2020). Crossref
4.
A. Ya. Travyanov, P. V. Petrovsky, V. V. Cheverikin, A. O. Lagutin, M. G. Khomutov, V. V. Luk�yanov. Metallurgist. 65(9-10), 1133 (2022). Crossref
5.
R. Safiullin, V. Valitov, R. Lutfullin, E. Galieva, E. Klassman. Lett. Mater. 12(4s), 439 (2022). Crossref
6.
R. Safiullin, S. Malysheva, R. Khazhaliev, A. Safiullin, A. Berestov, E. Plaksina. Lett. Mater. 13(2), 98 (2023). Crossref

Similar papers