The effect of warm rolling on structure and mechanical properties of low carbon pipe steel

S.N. Sergeev, I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.V. Gladkovsky, D.A. Dvoynikov show affiliations and emails
Received 06 February 2015; Accepted 26 February 2015;
This paper is written in Russian
Citation: S.N. Sergeev, I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.V. Gladkovsky, D.A. Dvoynikov. The effect of warm rolling on structure and mechanical properties of low carbon pipe steel. Lett. Mater., 2015, 5(1) 48-51
BibTex   https://doi.org/10.22226/2410-3535-2015-1-48-51

Abstract

This paper presents results of a research on the effect of warm rolling on structure and mechanical properties of the low-carbon pipe steel. It is shown that impact toughness at -196 °C  in  UFG  steel is 15 times higher than that in initial FG condition.This paper presents results of a research on the effect of warm rolling on structure and mechanical properties of the low-carbon pipe steel. The warm rolling results in formation of anisotropic ultra-fine grained (UFG) structure with average grain/subgrain size 0.5 µm in transverse direction and 20–30 µm along the rolling direction. The formation of ultra-fine grained (UFG) structure leads to 1.5 times increase in strength by comparison to fine-grained (FG) structure keeping the required level of ductility. It is shown that impact toughness at -196 °C in UFG steel is 15 times higher than that in initial FG condition. It was established that the total work of fracture at -196 °C increases due to growth of crack propagation distance in comparison to initial (FG) condition. Fractographic analysis of the sample after the test at -196 °C revealed that in the condition after rolling the mixed type of fracture surface is observed, and in the initial condition demonstrates completely brittle fracture. In both conditions of the materials at all temperatures tested appeared areas with the cleavage on the crack surface.

References (10)

1. Yu. I. Matrosov, D. A. Litvinenko, and S. A. Golovanenko, Steel for Main Pipelines. (in Russian) [Ю. И. Матросов, Д. А. Литвиненко, С. А. Голованенко. Сталь для магистральных трубопроводов. М. Металлургия, 1989. - 288с.].
2. I. Yu. Pyshmintsev, A. M. Maltseva, M. A. Smirnov, A. V. Korznikov. Steel. 2, 75-81 (2011) (in Russian) [И. Ю. Пышминцев, А. М. Мальцева, А. М. Гервасьев, М. А. Смирнов, А. В. Корзников. Сталь. 2, 75-81 (2011).].
3. V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, S. Y. Klyueva, A. A. Kruglova, E. I. Khlusova, V. V. Orlov. Phys. Met. Metallogr. 113 (5), 507-516 (2012). (in Russian) [В. М. Счастливцев, Т. И. Табатчикова, И. Л. Яковлева, С. Ю. Клюева, А. А. Круглова, Е. И. Хлусова, В. В. Орлов. Физика металлов и металловедение. 113 (5), 507-516 (2012).].
4. I. V. Gorynin, V. V. Rybin, V. V. Malyshevsky, E. I. Khlusova, E. V. Nesterova, V. V. Orlov, G. Yu. Kalinin. The questions of materials science. 2, 7-19 (2008). (in Russian) [И. В. Горынин, В. В. Рыбин, В. А. Малышевский, Е. И. Хлусова, Е. В. Нестерова, В. В. Орлов, Г. Ю. Калинин. Вопросы материаловедения. 2, 7-19 (2008).].
5. V. V. Rybin, V. V. Malyshevsky, E. I. Khlusova, V. V. Orlov, Y. Kh. Shakhpazov, Iu. D. Morozov, S. Yu. Nastich, M. Yu. Matrosov. The questions of materials science. 3, 127-137 (2009). (in Russian) [В. В. Рыбин, В. А. Малышевский, Е. И. Хлусова, В. В. Орлов, Е. Х. Шахпазов, Ю. Д. Морозов, С. Ю. Настич, М. Ю. Матросов. Вопросы материаловедения. 3, 127-137 (2009).].
6. I. M. Safarov, A. V. Korznikov, S. N. Sergeev, S. V. Gladkovskii, E. M. Borodin. Phys. Met. Metallogr. 113 (10), 1055-1060 (2012).] (in Russian) [И. М. Сафаров, А. В. Корзников, С. Н. Сергеев, С. В. Гладковский, Е. М. Бородин. Физика металлов и металловедение. 113 (10), 1055-1060 (2012).].
7. I. M. Safarov, A. V. Korznikov, R. M. Galeyev, S. N. Sergeev, S. V. Gladkovskii, E. M. Borodin. I. Yu. Pyshmintsev. Phys. Met. Metallogr. 115 (3), 315-323 (2014). (in Russian) [И. М. Сафаров, А. В. Корзников, Р. М. Галеев, С. Н. Сергеев, С. В. Гладковский, Е. М. Бородин, И. Ю. Пышминцев. Физика металлов и металловедение. 115 (3), 315-323 (2014).].
8. S. N. Sergeev, I. M. Safarov, A. V. Korznikov, R. M. Galeyev, S. V. Gladkovskii, E. M. Borodin. Letters on Materials. 2 (3), 117-120 (2012). (in Russian) [С. Н. Сергеев, И. М. Сафаров, А. В. Корзников, Р. М. Галеев, С. В. Гладковский, Е. М. Бородин. Письма о материалах, 2 (3), 117-120 (2012).].
9. E. G. Astafurova, G. G. Zakharova, E. V. Naydenkin, G. I. Raab, S. V. Dobatkin. Phys. Met. Metallogr. 111 (1), 64-73 (2011). (in Russian) [Е. Г. Астафурова, Г. Г. Захарова, Е. В. Найденкин, Г. И. Рааб, С. В. Добаткин. Физика металлов и металловедение. 111 (1), 64-73 (2011).].
10. I. M. Safarov, S. N. Sergeev, A. V. Korznikov, R. M. Galeyev, S. V. Gladkovskii. Letters on Materials. 3 (1), 3-6 (2013). (in Russian) [И. М. Сафаров, С. Н. Сергеев, А. В. Корзников, Р. М. Галеев, С. В. Гладковский. Письма о материалах, 3 (1), 3-6 (2013).].

Cited by (5)

1.
S. V. Gladkovsky, I. S. Kamantsev, S. V. Kuteneva, D. A. Dvoynikov, A. V. Kuznetsov. AIP Conference Proceedings. 2053, 020003 (2018). Crossref
2.
I. Musabirov, I. Safarov, M. Nagimov, I. Sharipov, V. Koledov, V. Khovailo, R. Mulyukov. Materials Today: Proceedings. 4(3), 4851 (2017). Crossref
3.
S. Kuteneva, S. Gladkovsky, D. Vichuzhanin, P. Nedzvetsky. Lett. Mater. 11(3), 279 (2021). Crossref
4.
V. Sitdikov, G. Sitdikova, E. Khafizova, R. Islamgaliev. Lett. Mater. 11(4), 497 (2021). Crossref
5.
S. Thakur, A. Das, B. Jha. Trans Indian Inst Met. 75(6), 1509 (2022). Crossref

Similar papers