The ultrafine-grained structure, texture and mechanical properties of low carbon steel obtained by various methods of plastic deformation

I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.N. Sergeev, S.V. Gladkovsky, D.A. Dvoynikov, I.Y. Litovchenko show affiliations and emails
Received 16 March 2016; Accepted 28 April 2016;
This paper is written in Russian
Citation: I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.N. Sergeev, S.V. Gladkovsky, D.A. Dvoynikov, I.Y. Litovchenko. The ultrafine-grained structure, texture and mechanical properties of low carbon steel obtained by various methods of plastic deformation. Lett. Mater., 2016, 6(2) 126-131
BibTex   https://doi.org/10.22226/2410-3535-2016-2-126-131

Abstract

The paper reports on the investigation of the effect of various methods of plastic deformation on the structure, texture and mechanical properties of low carbon 12GBA steel. It is found that multiple isothermal forging results in formation of equiaxed ultrafine-grained (UFG) structure with a uniform distribution of the second phase, the size of which ranges from 50 to 500 nm. The warm rolling leads to formation of UFG fibrous structure type with presence of carbides sized less than 100 nm. X-ray analysis revealed that both deformation schemes result in formation of two-component (110) [112] and (111) [123] texture. Low carbon steel 12GBA with fibrous UFG structure is characterized by high strength, with satisfactory ductility and toughness values similar to ones in case of the coarse-grained (CG) structure. Equiaxed UFG structure steels possess 2 times higher values of fracture toughness and 1.5 times increased tensile strength by comparison with the CG structured steel. Internal strains relaxation annealing of UFG fibrous structure leads to second phase coagulation retaining the two component texture and insignificant change of mechanical properties. It was shown that UFG fibrous steels retains its high level due to 1.5-2 times increase of crack initiation work. Considerable growth of fracture toughness in equaxed UFG steel takes place due to 7 times increase of crack initiation and propagation work.

References (15)

1. S.V. Gladkovskii, T.A. Trunina, E.A. Kokovikhin, S.V. Smirnova, I.S. Kamantsev, A.V. Gorbunov, Metal Science and Heat Treatment. (in Russian) [С.В. Гладковский, Т.А. Трутина, Е.А. Коковихин, С.В. Смирнова, И.С. Каманцев, А.В. Горбунов. Металловедение и термическая обработка металлов. 1(691), 3-7 (2013)].
2. I.I. Musabirov, R.R. Mulyukov, I.Z. Sharipov. Russian Physics Journal 58 (6), 5-9 (2015) (in Russian) [И.И. Мусабиров, Р.Р. Мулюков, И.З. Шарипов. Известия высших учебных заведений. Физика. 58 (6), 5-9 (2015)].
3. V.M. Farber, O.V. Selivanova, A.B. Arabey, O.N. Polukhina, A.S. Mamatnazarov. Metal Science and Heat Treatment. 8 (710), 53-55 (2014) (in Russian) [В.М. Фарбер, О.В. Селиванова, А.Б. Арабей, О.Н. Полухина, А.С. Маматназаров. Металловедение и термическая обработка металлов. 8(710), 53-55 (2014)].
4. V.M. Schastlivtsev, T.I. Tabatchikova, I.L. Yakovleva, S.Y. Del’gado Reina, S.A. Golosienko, U.A. Pazilova, E.I. Khlusova. Phys. Met. Metallogr. 116(2), 199-209 (2015). (in Russian) [В.М. Счастливцев, Т.И. Табатчикова, И.Л. Яковлева, С.Ю. Дельгадо Рейна, С.А. Голосиенко, У.А. Позилова, Е.И. Хлусова. Физика металлов и металловедение. 116(2), 199-209 (2015).]. Crossref
5. M.A. Smirnov, I. Yu. Pyshmintsev, O.V. Varnak, A.N. Maltseva. Russian metallurgy (Metally). 8, 9-15 (2014). (in Russian) [М.А. Смирнов, И.Ю. Пышминцев, О.В. Варнак, А.Н. Мальцева. Деформация и разрушение материалов. 8, 9-15 (2014).].
6. G.G. Maier, E.G. Astafurova, E.V. Naydenkin, H.J. Maier, G.I. Raab, P.D. Odessky, S.V. Dobatkin. Mater. Sci. and Eng.:A. 581, 104 (2015). Crossref
7. E.G. Astafurova, G.G. Maier, V.S. Koshovkina, E.V. Melnikov, E.V. Naydenkin, A. Smirnov, V.A. Bataev, P.D. Odessky, S.V. Dobatkin. Letters on Materials 5 (4), 432 (2015).
8. R.Z. Valiev, A.V. Ganeev, G.V. Klevtsov, N.A. Klevtsova, V.M. Kushnarenko. Steel in Translation. 44 (6), 418 (2014).
9. R.Z. Valiev, G.V. Klevtsov, N.A. Klevtsova, M.V. Fesenyuk, M.R. Kashapov, A.G. Raab, M.V. Karavaeva, A.V. Ganeev. Russian metallurgy (Metally). 1, 21 (2013). (in Russian) [Р.З. Валиев, Г.В. Клевцов, Н.А. Клевцова, М.В. Фесенюк, М.Р. Кашапов, А.Г. Рааб, М.В. Караваева, А.В. Ганеев. Деформация и разрушение материалов. 1, 21 (2013).].
10. S.N. Sergeev, I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.V. Gladkovskii, D.I. Dvoynikov. Letters on Materials. 5(1), 48-51 (2015). (in Russian) [С.Н. Сергеев, И.М. Сафаров, А.В. Корзников, Р.М. Галеев, С.В. Гладковский, Д.А. Двойников. Письма о материалах, 5(1), 48-51 (2015).].
11. I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.N. Sergeev, S.V. Gladkovskii, I.Yu. Doklady Physics. 115(3), 315-323 (2016). (in Russian) [И.М. Сафаров, А.В. Корзников, Р.М. Галеев, С.Н. Сергеев, С.В. Гладковский, И.Ю. Пышминцев. Доклады Академии Наук. 466(3), 289-292 (2016).]. Crossref
12. I.M. Safarov, A.V. Korznikov, R.M. Galeyev, S.N. Sergeev, S.V. Gladkovskii, E.M. Borodin. I.Yu. Pyshmintsev. Phys. Met. Metallogr. 115(3), 315-323 (2014). (in Russian) [И.М. Сафаров, А.В. Корзников, Р.М. Галеев, С.Н. Сергеев, С.В. Гладковский, Е.М. Бородин, И.Ю. Пышминцев. Физика металлов и металловедение. 115(3), 315-323 (2014).]. Crossref
13. F. Utyashev. G.I. Raab. The deformation methods of obtaining and processing of ultrafine-grained and nanostructured materials. Ufa. (2013) 376 p. (in Russian) [Ф.З. Утяшев, Г.И. Рааб. Деформационные методы получения и обработки ультрамелкозернистых и наноструктурных материалов // Уфа: Гилем. НИК Башк. энцикл. 2013. 376 с.].
14. A.A. Nazarov, R.R. Mulyukov. Nanostructured Materials. Chapter 22. In: Handbook of Nanoscience, Engineering, and Technology, Ed. Goddard W., Brenner D., Lyshevski S., Iafrate G., Boca Raton, London, New York, Washington, D.C.: CRC Press. 2002.
15. L.R. Botvina. Destruction: kinetics, mechanisms, general laws. M: Science, (2008) 334 p. (in Russian) [Л.Р. Ботвина. Разрушение: Кинетика, механизмы, общие закономерности. М: Наука, 2008. 334 с.].

Cited by (2)

1.
P. Kuznetsov, T. Rakhmatulina, V. Panin, D. Shumakova. AIP Conference Proceedings. 1783, 020127 (2016). Crossref
2.
S. V. Gladkovsky, D. A. Konovalov, S. V. Kuteneva. J. of Materi Eng and Perform. 29(9), 5757 (2020). Crossref

Similar papers