Effect of cooling rate on the bainite fraction in low carbon martensitic steel: combined analysis of transformation kinetics and crystal curvature

A.A. Zisman, N.Y. Zolotorevsky, S.N. Petrov, N.Y. Ermakova show affiliations and emails
Received: 14 November 2022; Revised: 11 December 2022; Accepted: 15 December 2022
Citation: A.A. Zisman, N.Y. Zolotorevsky, S.N. Petrov, N.Y. Ermakova. Effect of cooling rate on the bainite fraction in low carbon martensitic steel: combined analysis of transformation kinetics and crystal curvature. Lett. Mater., 2023, 13(1) 67-72
BibTex   https://doi.org/10.22226/2410-3535-2023-1-67-72

Abstract

Experimetnal spectrum of crystal curvature enables to discriminate between bainite and marnetsite and quantify them. To this end a main phase is fitted first to relevant spectrum tail.Derived by means of EBSD, statistics of crystal curvature in quenched low carbon steel is analyzed with allowance for its transformation kinetics in terms of dilatometry data. Based on curvature spectra sensitive to the distribution of dislocation density, fractions of martensite and bainite are quantified at high and low cooling rates. Distinction between the resulting microstructures is ascribed to various proportions of their athermal and thermally activated (rate-dependent) constituents.

References (26)

1. D. P. Koistinen, R. E. Marburger. Acta Metall. 7, 59 (1959). Crossref
2. K. Jeyabalan, S. D. Catteau, J. Teixeira, G. Geandier, B. Denand, J. Dulc, S. Denis, G. Michel, M. Courteaux. Materialia. 9, 100582 (2020). Crossref
3. S. Ramesh Babu, D. Ivanov, D. Porter. ISIJ Int. 59, 169 (2019). Crossref
4. J. R. C. Guimarães, P. R. Rios. J. Mater. Res. Technol. 7, 499 (2018). Crossref
5. S. M. C. van Bohemen, J. Sietsma. Mater. Sci. Technol. 30, 1024 (2014). Crossref
6. L. Morsdorf, C. C. Tasan, D. Ponge, D. Raabe. Acta Mater. 95, 366 (2015). Crossref
7. Z. Wei, H. Hu, M. Liu, J. Tian, G. Xu. Metals. 12(1), 104 (2022). Crossref
8. L. Qian, Z. Li, T. Wang, D. Li, F. Zhang, J. Meng. J. Mater. Sci. Technol. 96, 69 (2022). Crossref
9. C. Rampelberg, S. Y. P. Allain, G. Geandier, J. Teixeria, F. Lebel, T. Sourmail. JOM. 73, 3181 (2021). Crossref
10. S. Samanta, P. Biswas, S. B. Singh. Scripta Mater. 136, 132 (2017). Crossref
11. A. Navarro-Lopez, J. Sietsma, M. J. Santoļ¬mia. Metall. Mater. Trans. A47, 1028 (2016). Crossref
12. B. L. Adams, S. I. Wright, K. Kunze. Metall. Trans. A24, 819 (1993). Crossref
13. S. I. Wright, M. M. Nowell, D. P. Field. Microsc. Microanal. 17, 316 (2011). Crossref
14. R. F. Tomaz, D. B. Santos, K. Camey, R. Barbosa, M. S. Andrade, D. P. Escobar. J. Mater. Res. Technol. 8, 2423 (2019). Crossref
15. A. A. Gazder, F. Al-Harbi, Y. T. Spanke, D. R. G. Mitchel, E. V. Pereloma. Ultramicr. 147, 114 (2014). Crossref
16. S. Breumier, T. Martinez Ostormujof, B. Frincu, N. Gey, A. Couturier, N. Loukachenko, P. E. Aba-perea, L. Germain. Mater. Char. 186, 111805 (2022). Crossref
17. A. A. Zisman, N. Yu. Zolotorevsky, S. N. Petrov, E. I. Khlusova, E. A. Yashina. Metal Sci. Heat Treat. 60, 142 (2018). Crossref
18. N. Takayama, G. Miyamoto, T. Furuhara. Acta Mater. 60, 2387 (2012). Crossref
19. A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedstroem, A. Borgenstam. Acta Mater. 60, 7265 (2012). Crossref
20. N. Y. Zolotorevsky, S. N. Panpurin, A. A. Zisman, S. N. Petrov. Mater. Charact. 107, 278 (2015). Crossref
21. T. Nyyssonen, P. Peura, V. T. Kuokkala. Metall. Mater. Trans. A49, 6246 (2018). Crossref
22. S. Choi. Mater. Sci. Eng. A. 363, 72 (2003). Crossref
23. S. Dhara, S. M. C. van Bohemen, M. J. Santofimia. Mater. Today Comm. 33, 104567 (2022). Crossref
24. X. Zhang, H. Yu, Q. Li, C. Song, S. Yang. Mater. Sci. Eng. A840, 142968 (2022). Crossref
25. M. Takahashi, H. K. D. Bhadeshia. Mater. Sci. Technol. 6, 592 - 603 (1990). Crossref
26. A. A. Zisman, N. Yu. Zolotorevsky, S. N. Petrov, E. I. Khlusova, E. A. Yashina. Inorg. Mater.: Appl. Res. 12, 1521 (2021). Crossref

Similar papers

Funding

1. Russian Science Foundation - project No 22-19-00627