Features of the growth of austenite grains in steel forged from a large ingot

V.I. Bogdanov, I.V. Teplukhina ORCID logo , A.S. Tsvetkov ORCID logo , T.I. Titova, N.A. Shulgan, L.A. Milyakova show affiliations and emails
Received 26 April 2019; Accepted 13 May 2019;
This paper is written in Russian
Citation: V.I. Bogdanov, I.V. Teplukhina, A.S. Tsvetkov, T.I. Titova, N.A. Shulgan, L.A. Milyakova. Features of the growth of austenite grains in steel forged from a large ingot. Lett. Mater., 2019, 9(3) 304-309
BibTex   https://doi.org/10.22226/2410-3535-2019-3-304-309

Abstract

Features of austenitic grains growth in steel forging from a large ingotFor the production of large-sized equipment of nuclear power plants heat-resistant Cr-Mo-V and Cr-Ni-Mo-V steel ingots weighing 360 ÷ 420 tons are used. One of the important characteristics of forgings, obtained from such large ingots, is the size of austenite grains, which has a significant impact on mechanical properties. Improving the reliability of the equipment of nuclear power reactors is possible by increasing the thickness of the wall of the reactor vessel, as well as by ensuring the quality of the forged metal made from the large ingot and the homogeneity of the metal structure and properties. In this work, the kinetics of growth of austenitic grains is studied under different temperature and time regimes of isothermal aging. The grain size was measured on the forging metal with a wall thickness during heat treatment up to 650 mm, made of 15H3NMFA-A reactor structural steel. The studied parts were slightly different in chemical composition — the top and bottom parts of the ingot weighing 360 tons. The study was conducted by the method of quantitative metallography and showed the difference in the kinetics of grain growth in different parts of the forging from a large ingot. The latter is explained by the fact that, due to the peculiarities of the method and technology of smelting, as well as a significant mass, the processes of liquation in large ingots are highly developed. The growth curves of austenitic grains were constructed for top and bottom parts, depending on the temperature and time parameters of the heat treatment regimes. The results show the presence of a certain difference in the tendency of austenitic grains growth in different zones of the studied forging, which can affect on the homogeneity of the metal structure and properties.

References (17)

1. I. V. Teplukhina, I. I. Grekova, V. V. Dyukov, I. G. Savelieva. Voprosy Materialovedeniya. 2 (50), 19 (2007). (in Russian) [И. В. Теплухина, И. И. Грекова, В. В. Дюков, И. Г. Савельева. Вопросы материаловедения. 2 (50), 19 (2007).].
2. I. V. Teplukhina, A. S. Tcvetkov, O. Y. Zaytseva. Technologiya Metallov. 3, 17 (2016). (in Russian) [И. В. Теплухина, А. С. Цветков, О. Ю. Зайцева. Технология металлов. 3, 17 (2016).].
3. N. T. Tihonova, O. A. Sofrygina, S. Yu. Zhukova, I. Yu. Pyshmintsev, S. M. Bitjukov. Izvestia. Ferrous metallurgy. 5, 60 (2012). (in Russian) [Н. Т. Тихонцева, О. А. Софрыгина, С. Ю. Жукова, И. Ю. Пышминцев, С. М. Битюков. Известия ВУЗ. Черная металлургия. 5, 60 (2012).].
4. T. I. Titova, I. F. Semernina, N. A. Shul’gan, L. A. Milyakova. Tyazheloye mashinostroyeniye. 6, 14 (2012). (in Russian) [Т. И. Титова, И. Ф. Семернина, Н. А. Шульган, Л. А. Милякова. Тяжелое машиностроение. 6, 14 (2012).].
5. V. S. Mes’kin. Osnovy legirovaniya stali. Moscow, Metallurgiya (1964) 684 p. (in Russian) [В. С. Меськин. Основы легирования стали. Москва, Металлургия (1964) 684 с.].
6. E. Gudremon. Spetsial'nyye stali. Moscow, Metallurgiya (1959) 952 p. (in Russian) [Э. Гудремон. Специальные стали. Москва, Металлургия (1959) 952 с.].
7. B. S. Bokstein. Diffuziya v metallakh. Moscow, Metallurgiya (1978) 248 p. (in Russian) [Б. С. Бокштейн. Диффузия в металлах. Москва, Металлургия (1978) 248 с.].
8. V. S. Dub, A. N. Romashkin, A. N. Mal’ginov, I. A. Ivanov, D. S. Tolstykh. Metallurg. 11, 45 (2013). (in Russian) [В. С. Дуб, А. Н. Ромашкин, А. Н. Мальгинов, И. А. Иванов, Д. С. Толстых. Металлург. 11, 45 (2013).].
9. V. S. Dub, A. N. Romashkin, I. A. Ivanov, D. S. Tolstykh, A. N. Mal’ginov. Metallurg. 12, 44 - 49 (2013). (in Russian) [В. С. Дуб, А. Н. Ромашкин, И. А. Иванов, Д. С. Толстых, А. Н. Мальгинов. Металлург. 12, 44 (2013).].
10. S. K. Scoblo, E. A. Kazachkov. Slitki dlya krupnykh pokovok. Moscow, Metallurgiya (1973) 247 p. (in Russian) [С. К. Скобло, Е. А. Казачков. Слитки для крупных поковок. Москва, Металлургия (1973) 247 с.].
11. S. Kawaguchi, H. Tsukada, K. Suzuki, I. Sat, S. Onodera. Steel Forgings. STP 903. West Conshohocken, PA, ASTM International (1986) p. 398 – 409. Crossref
12. B. I. Berezhko, A. G. Ignatenko, Yu. V. Sergeev. Progressivnyye materialy i tekhnologii. 3, 30 (1999). (in Russian) [Б. И. Бережко, А. Г. Игнатенко, Ю. В. Сергеев. Прогрессивные материалы и технологии. 3, 30 (1999).].
13. C. Garci’a de Andre’s, F. G. Caballero, C. Capdevila, D. San Martin. Materials Characterization. 49, 121 (2003). Crossref
14. C. Garci’a de Andre’s, M. J. Bartolome, C. Capdevila. Materials Characterization. 46, 389 (2001). Crossref
15. T. V. Soshina, A. A. Zisman, E. I. Hlusova. Metallurg. 2, 63 (2013). (in Russian) [Т. В. Сошина, А. А. Зисман, Е. И. Хлусова. Металлург. 2, 63 (2013).].
16. M. G. Lozinskiy. Teplovaya mikroskopiya materialov. Moscow, Metallurgiya (1976) 304 p. (in Russian) [М. Г. Лозинский. Тепловая микроскопия материалов. Москва, Металлургия (1976) 304 с.].
17. I. V. Teplukhina, V. M. Golod, A. S. Tsvetkov. Letters on materials. 1 (29), 37 (2018). (in Russian) [И. В. Теплухина, В. М. Голод, А. С. Цветков. Письма о материалах. 1 (29), 37 (2018).]. Crossref

Similar papers