Optical and dielectric properties of nanosized ceramics Bi2Mg1-xСrxTa2O9.5-Δ with pyrochlore structure

E.A. Serebryakov, A.D. Shpynova, R.I. Korolev, N.A. Sekushin, A.A. Selyutin ORCID logo , B.A. Makeev ORCID logo , N.A. Zhuk show affiliations and emails
Received 14 September 2022; Accepted 05 December 2022;
Citation: E.A. Serebryakov, A.D. Shpynova, R.I. Korolev, N.A. Sekushin, A.A. Selyutin, B.A. Makeev, N.A. Zhuk. Optical and dielectric properties of nanosized ceramics Bi2Mg1-xСrxTa2O9.5-Δ with pyrochlore structure. Lett. Mater., 2023, 13(1) 50-55
BibTex   https://doi.org/10.22226/2410-3535-2023-1-50-55

Abstract

The properties of Cr,Mg-codoped bismuth tantalate pyrochlore have been investigatedChromium-containing pyrochlores Bi2Mg1-xСrxTa2O9.5-Δ with a variable content of magnesium / chromium ions were obtained by solid-phase synthesis. The synthesized samples were characterized by a loose nanosized microstructure formed by partially intergrown ceramic grains. They were bright green. With an increase in the chromium content in the samples, the unit cell parameter of the solid solutions decreased from 10.4890 to 10.4467 Å, obeying Vegard’s rule. The absorption spectra of chromium pyrochlores contained several features in the range below 400 nm, a shoulder in the range of 450 – 520 nm, a broad absorption in the range of 600 – 700 nm with a maximum at 650 nm, and a narrow peak at 724 nm. The band gap of the obtained materials for direct allowed most intense electronic transitions was in the range of 2.14 – 2.29 eV. At 23°С, the permittivity of the samples in a wide frequency range (102 –106 Hz) was practically independent of frequency and decreased with increasing content of chromium ions in solid solutions from 19.5 to 16.5 at 106 Hz. Above 105 Hz, the dielectric loss tangent for all samples slightly depended on frequency and took low values of 0.004 (106 Hz). The conduction activation energy for the samples varied in the range 1.39 ÷1.48 eV.

References (24)

1. S. Murugesan, M. N. Huda, Y. Yan, M. M. Al-Jassim, V. Subramanian. J. Phys. Chem. C. 114, 10598 (2010). Crossref
2. C. C. Khaw, K. B. Tan, C. K. Lee. Ceram. Intern. 35, 1473 (2009). Crossref
3. G. Giampaoli, T. Siritanon, B. Day, J. Li, M. A. Subramanian. Prog. Solid State Chem. 50, 16 (2018). Crossref
4. J. Pandey, V. Shrivastava, R. Nagarajan. Inorg. Chem. 57, 13667 (2018). Crossref
5. M. A. Subramanian, G. Aravamudan, G. V. Subba Rao. Prog. Solid State Chem. 15, 55 (1983). Crossref
6. R. A. McCauley. J. Appl. Phys. 51, 290 (1980). Crossref
7. G. C. Miles, A. R. West. J. Am. Ceram. Soc. 89, 1042 (2006). Crossref
8. F. Matteucci, G. Cruciani, M. Dondi, G. Baldi, A. Barzanti. Acta Mater. 55, 2229 (2007). Crossref
9. D. Huiling, Y. Xi. Journal of Materials Science: Materials in Electronics. 15, 613 (2004). Crossref
10. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, S. V. Nekipelov, V. V. Kharton, N. A. Sekushin. Inorgan. Chem. 60, 4924 (2021). Crossref
11. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, A. A. Reveguk, D. V. Sivkov, S. V. Nekipelov. Ceram. Intern. 48, 14849 (2022). Crossref
12. N. A. Zhuk, M. G. Krzhizhanovskaya. Ceram. Int. 47, 30099 (2021). Crossref
13. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, S. V. Nekipelov, D. V. Sivkov, V. N. Sivkov, A. M. Lebedev, R. G. Chumakov, B. A. Makeev, V. V. Kharton, V. V. Panova, R. I. Korolev. Sol. St. Sci. 125, 106820 (2022). Crossref
14. N. A. Zhuk, N. A. Sekushin, V. G. Semenov, A. V. Fedorova, A. A. Selyutin, M. G. Krzhizhanovskaya, V. P. Lutoev, B. A. Makeev, V. V. Kharton, D. N. Sivkov, A. D. Shpynova. J. Alloys Comps. 903, 163928 (2022). Crossref
15. N. A. Zhuk, M. G. Krzhizhanovskaya, N. A. Sekushin, V. V. Kharton, A. V. Koroleva, S. V. Nekipelov, D. V. Sivkov, V. N. Sivkov, B. A. Makeev, A. M. Lebedev, R. G. Chumakov, S. Y. Kovalenko. ACS Omega. 6, 23262 (2021). Crossref
16. F. A. Jusoh, K. B. Tan, Z. Zainal, S. K. Chen, C. C. Khaw, O. J. Lee. J. Mater. Res. Techn. 9, 11022 (2020). Crossref
17. M. P. Chon, K. B. Tan, Z. Zainal, Y. H. Taufiq-Yap, P. Y. Tan, C. C. Khaw, S. K. Chen. J. Appl. Ceram. Techn. 13, 718 (2016). Crossref
18. M. P. Chon, K. B. Tan, C. C. Khaw, Z. Zainal, Y. H. Taufiq-Yap, S. K. Chen, P. Y. Tan. J. Alloys Comp. 675, 116 (2016). Crossref
19. C. C. Khaw, K. B. Tan, C. K. Lee, A. R. West. J. Eur. Ceram. Soc. 32, 671 (2012). Crossref
20. Ismunandar, T. Kamiyama, K. Oikawa, A. Hoshikawa, B. J. Kennedy, Y. Kubota, K. Kato. Mater. Res. Bull. 39, 553 (2004). Crossref
21. R. D. Shannon. Acta Crystallogr. А. 32, 751 (1976). Crossref
22. N. A. Zhuk, I. V. Piir, N. V. Chezhina. Russ. J. General Chem. 76, 1705 (2006). Crossref
23. N. A. Zhuk, I. V. Piir, A. L. Pimenov, N. V. Chezhina. Russ. J. General Chem. 77, 990 (2007). Crossref
24. N. A. Zhuk, M. G. Krzhizhanovskaya, N. A. Sekushin, V. V. Kharton, B. A. Makeev, V. A. Belyy, R. I. Korolev. Ceram. Intern. 47, 19424 (2021). Crossref