Synthesis and characterization NS-reduced graphene oxide hydrogel and its electrochemical properties

A. Nugroho, F. Erviansyah, D. Floresyona, S. Mahalingam, A. Manap, N. Afandi, K. Lau, C. Chia ORCID logo show affiliations and emails
Received 15 March 2022; Accepted 28 May 2022;
Citation: A. Nugroho, F. Erviansyah, D. Floresyona, S. Mahalingam, A. Manap, N. Afandi, K. Lau, C. Chia. Synthesis and characterization NS-reduced graphene oxide hydrogel and its electrochemical properties. Lett. Mater., 2022, 12(2) 169-174
BibTex   https://doi.org/10.22226/2410-3535-2022-2-169-174

Abstract

The presence of N and S atoms which spread evenly on the hydrogel structure was confirmed by energy-dispersive x-ray (EDX) mapping. The introduction of NS doping into the rGOH structure improves the sample's electrochemical performance compared to the undoped sample.Developing materials with good electrochemical performance is critical in energy storage applications. One of the promising materials for these applications is reduced graphene oxide (rGO) based materials. Utilizing thiourea as a nitrogen (N) and sulfur (S) source, we present a simple hydrothermal approach for simultaneous doping of nitrogen and sulfur into the rGO hydrogel structure. The visual photograph shows the hydrogel form of the sample. XRD and Raman analysis shows the carbon structural changes during the reduction process. The presence of N and S atoms which spread evenly on the hydrogel structure, was confirmed by energy-dispersive x-ray (EDX) mapping. A cyclic voltammetry measurement at a current density of 0.5 A / g reveals that the NS-rGOH sample has a high specific capacity of 750 C / g. Even at a current density of 10 A / g, it can maintain outstanding charge-discharge stability, with 83.3 % of the initial capacity preserved after 1000 charge-discharge cycles. Moreover, EIS analysis reveals that the low charge transfer resistance and high ionic diffusivity of the rGO hydrogel sample lead to good electrochemical performance. NS doping into the rGOH structure improves the sample's electrochemical performance compared to the undoped sample.

References (39)

1. J. Wen, D. Zhao, C. Zhang. Renew. Energy. 162, 1629 (2020). Crossref
2. M. Horn, J. MacLeod, M. Liu, J. Webb, N. Motta. Econ. Anal. Policy. 61, 93 (2019). Crossref
3. S. Huang, X. Zhu, S. Sarkar, Y. Zhao. APL Mater. 7, 100901 (2019). Crossref
4. D. P. Chatterjee, A. K. Nandi. J. Mater. Chem. A. 9, 15880 (2021). Crossref
5. J. S. Ko, C.-H. Lai, J. W. Long, D. R. Rolison, B. Dunn, J. Nelson Weker. ACS Appl. Mater. Interfaces. 12, 20145 (2020). Crossref
6. Q. Li, M. Horn, Y. Wang, J. MacLeod, N. Motta, J. Liu. Materials. 12, 703 (2019). Crossref
7. B. You, F. Kang, P. Yin, Q. Zhang. Carbon. 103, 9 (2016). Crossref
8. M. Cossutta, V. Vretenar, T. A. Centeno, P. Kotrusz, J. McKechnie, S. J. Pickering. J. Clean. Prod. 242, 118468 (2020). Crossref
9. Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, F. Wei. Carbon. 141, 467 (2019). Crossref
10. R. Dubey, V. Guruviah. Ionics (Kiel). 25, 1419 (2019). Crossref
11. D. Yoon, K. Y. Chung, W. Chang, S. M. Kim, M. J. Lee, Z. Lee, J. Kim. Chem. Mater. 27, 266 (2015). Crossref
12. E. Budi Nursanto, A. Nugroho, S.-A. Hong, S. J. Kim, K. Yoon Chung, J. Kim. Green Chem. 13, 2714 (2011). Crossref
13. E. I. Bîru, H. Iovu. In: Raman Spectrosc. Graphene Nanocomposites Studied by Raman Spectroscopy. (2018). Crossref
14. R. K. Mishra, G. J. Choi, Y. Sohn, S. H. Lee, J. S. Gwag. Chem. Commun. 56, 2893 (2020). Crossref
15. T. Wang, L. X. Wang, D. L. Wu, W. Xia, D. Z. Jia. Sci. Rep. 5, 1 (2015). Crossref
16. M. Ghorbani, H. Abdizadeh, M. R. Golobostanfard. Procedia Mater. Sci. 11, 326 (2015). Crossref
17. G. Gorgolis, C. Galiotis. 2D Mater. 4, 032001 (2017). Crossref
18. S. Han, D. Wu, S. Li, F. Zhang, X. Feng. Adv. Mater. 26, 849 (2014). Crossref
19. M. Abdul Mannan, Y. Hirano, A. T. Quitain, M. Koinuma, T. Kida. Micro Nanosyst. 12, 129 (2019). Crossref
20. K. Wang, L. Li, T. Zhang, Z. Liu. Energy. 70, 612 (2014). Crossref
21. F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva. J. Mater. Chem. C. 3, 10715 (2015). Crossref
22. T. Jin, J. Chen, C. Wang, Y. Qian, L. Lu. J. Mater. Sci. 55, 12103 (2020). Crossref
23. V. Thirumal, A. Pandurangan, R. Jayavel, R. Ilangovan. Synth. Met. 220, 524 (2016). Crossref
24. A. G. Kannan, J. Zhao, S. G. Jo, Y. S. Kang, D. W. Kim. J. Mater. Chem. A. 2, 12232 (2014). Crossref
25. W. Zhang, Z. Chen, X. Guo, K. Jin, Y. X. Wang, L. Li, Y. Zhang, Z. Wang, L. Sun, T. Zhang. Electrochim. Acta. 278, 51 (2018). Crossref
26. Z. Lu, Y. Chen, Z. Liu, A. Li, D. Sun, K. Zhuo. RSC Adv. 8, 18966 (2018). Crossref
27. B. Paulchamy, G. Arthi, B. D. Lignesh. J. Nanomed. Nanotechnol. 06, 1 (2015). Crossref
28. N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, C. H. Voon. Procedia Eng. 184, 469 (2017). Crossref
29. L. T. Le, M. H. Ervin, H. Qiu, B. E. Fuchs, W. Y. Lee. Electrochem. Commun. 13, 355 (2011). Crossref
30. K. Kakaei, A. Balavandi. J. Colloid Interface Sci. 490, 819 (2017). Crossref
31. R. A. Rochman, S. Wahyuningsih, A. H. Ramelan, Q. A. Hanif. IOP Conf. Ser. Mater. Sci. Eng. 509, 012119 (2019). Crossref
32. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka. J. Electron Spectros. Relat. Phenomena. 195, 145 (2014). Crossref
33. H. H. Huang, K. K. H. De Silva, G. R. A. Kumara, M. Yoshimura. Sci. Rep. 8, 2 (2018). Crossref
34. M. R. Thalji, G. A. M. Ali, P. Liu, Y. L. Zhong, K. F. Chong. Chem. Eng. J. 409, 128216 (2021). Crossref
35. J. W. Lee, T. Kshetri, K. R. Park, N. H. Kim, O.-K. Park, J. H. Lee. Compos. Part B Eng. 222, 109089 (2021). Crossref
36. P. Wang, H. He, X. Xu, Y. Jin. ACS Appl. Mater. Interfaces. 6, 1563 (2014). Crossref
37. X. Wang, H. Ma, X. He, J. Wang, J. Han, Y. Wang. New Carbon Mater. 32, 213 (2017). Crossref
38. Z. Y. Sui, Y. N. Meng, P. W. Xiao, Z. Q. Zhao, Z. X. Wei, B. H. Han. ACS Appl. Mater. Interfaces. 7, 1431 (2015). Crossref
39. W. Si, J. Zhou, S. Zhang, S. Li, W. Xing, S. Zhuo. Electrochim. Acta. 107, 397 (2013). Crossref

Funding

1. Universitas Pertamina-Uniten International Collaboration Grant - Grant No. 2020001YCUPU