Features of obtaining tantalum-containing coatings by magnetron sputtering

A.I. Shumilin ORCID logo , A.M. Zakharevich, A.A. Skaptsov, A.A. Fomin show affiliations and emails
Received 23 September 2021; Accepted 30 November 2021;
This paper is written in Russian
Citation: A.I. Shumilin, A.M. Zakharevich, A.A. Skaptsov, A.A. Fomin. Features of obtaining tantalum-containing coatings by magnetron sputtering. Lett. Mater., 2022, 12(1) 15-20
BibTex   https://doi.org/10.22226/2410-3535-2022-1-15-20

Abstract

Tantalum-containing film with superhard inclusionsTantalum-containing coatings deposited on titanium in vacuum were studied. For deposition of films, a DC magnetron with a balanced magnetic system was used. High purity (99.99 %) tantalum sheet was used as a target. The current density of the glow discharge during the etching of the target was 20.4 A / m2. Plasma-forming gases were argon or a mixture of argon and oxygen. Three types of coatings of tantalum on titanium were obtained: the first one was tantalum oxide on titanium, the second — tantalum on titanium, and the third — tantalum on titanium with a tantalum oxide sublayer. The effect of a pre-deposited sublayer of tantalum oxide on the hardness and morphology of the “base-coating” system was studied. It was found that of the greatest practical interest is an oxygen-saturated tantalum coating with the thickness of 800 nm deposited on a tantalum oxide sublayer with the thickness of 75 – 80 nm. Nanoindentation of samples with a tantalum-containing coating without a tantalum oxide sublayer revealed an increase in hardness up to 39 GPa and in elastic modulus up to 194 GPa. In case of the deposited tantalum oxide sublayer, the nanoindentation hardness reached 60 GPa, and the elastic modulus was 230 GPa. This superhard two-layer structure had a bimodal hardness distribution and contained a Ta2O phase with a cubic crystal lattice. In this case, the proportion of measurements related to superhard inclusions was at least 43 %. The coating had a heterogeneous structure consisting of agglomerates with a size of 0.4 – 0.5 µm. The chemical composition of the surface layer was characterized by an oxygen content of 17.46 at.%, titanium — within 2.00 at.%, and tantalum — 80.54 at.%. An increase in the proportion of coating agglomerates with a size of 0.2 – 0.3 µm was observed from 53.13 to 68.25 % when using a tantalum oxide sublayer. The results make it possible to consider the developed process of obtaining coatings promising for the application of functional layers on titanium medical devices.

References (22)

1. M. Fomina, V. Koshuro, A. Shumilin, A. Voyko, A. Zakharevich, A. Skaptsov, A. Steinhauer, A. Fomin. Compos. Struct. 234, 11688 (2020). Crossref
2. M. Kaur, K. Mater. Sci. Eng. C. 102, 844 (2019). Crossref
3. X. Wang, B. Ning, X. Pei. Colloids Surf. B. 208, 112055 (2021). Crossref
4. H. Chouirfa, H. Bouloussa, V. Migonney, C. Falentin-Daudre. Acta Biomater. 83, 37 (2019). Crossref
5. H.-L. Huang, M.-T. Tsai, Y.-J. Lin, Y.-Y. Chang. Thin Solid Films. 688, 137268 (2019). Crossref
6. L.-Y. Shi, A. Wang, F.-Z. Zang, J.-X. Wang, X.-W. Pan, H.-J. Chen. Colloids Surf. B. 160, 22 (2017). Crossref
7. M. S. Morgunov, V. V. Kuznetsov, M. V. Ershov. Biomed Eng. 52 (3), 169 (2018). Crossref
8. A. N. Zelikman, B. G. Korshunov, A. V. Elyutin, A. M. Zakharov. Niobium and Tantalum. Moscow, Metallurgy (1990) 296 p. (in Russian) [А. Н. Зеликман, Б. Г. Коршунов, А. В. Елютин, А. М. Захаров. Ниобий и тантал. Москва, Металлургия (1990) 296 с.].
9. D. N. Makeev, O. V. Zakharov, A. N. Vinogradov, A. V. Kochetkov. Mater. Sci. Eng. 116, 012023 (2016). Crossref
10. W. Sakiew, P. Schwerdtner, M. Jupe, A. Pflug, D. Ristau. J Vac Sci Technol A. 39, 063402 (2021). Crossref
11. D. Liu, J. Ni, J. Ye, X. Ni, X. Zhu, Z. Zhang, R. Liu, Q. Zhao. J Test Eval. 49 (6), (2021). Crossref
12. V. Koshuro, M. Fomina, A. Fomin, I. Rodionov. Compos. Struct. 196, 1 (2018). Crossref
13. M. Fomina, V. Koshuro, V. Papshev, I. Rodionov, A. Fomin. Data Brief. 20, 1409 (2018). Crossref
14. N. Villa, D. A. Golosov, S. N. Melnikov, T. D. Nguyen, A. D. Golosov, E. E. Litvin, N. N. Lam. PFMT. 1 (42), 12 (2020).
15. J. S. V. Chandra, S. Uthanna, G. Mohan Rao. Appl. Surf. Sci. 254 (7), 1953 (2008). Crossref
16. V. A. Zhabrev, Yu. A. Bystrov, L. P. Efimenko, A. E. Komlev, V. G. Baryshnikov, A. A. Kolomitsev, V. I. Shapovalov. Tech. Phys. Lett. 30 (5), 396 (2004). Crossref
17. K. Lejaeghere, V. Speybroeck, G. Oost, S. Cottenier. Crit. Rev. Solid State Mater. Sci. 39 (1), 1 (2014). Crossref
18. S. Steeb, J. Renner, J. Less. Common Met. 9, 181 (1965). Crossref
19. R. W. G. Wyckoff. Cryst. Struct. 1, 7 (1963).
20. A. Arakcheeva, G. Chapuis, V. Grinevitch. Acta Crystallographica Section B. 58 (1), 1 (2002). Crossref
21. C. Hertl, L. Koll, T. Schmitz, E. Werner, U. Gbureck. Mater. Sci. Eng. C. 41, 28 (2014). Crossref
22. D. Bernoulli, U. Müller, M. Schwarzenberger, R. Hauert, R. Spolenak. Thin Solid Films. 548, 157 (2013). Crossref

Funding

1. Russian Science Foundation - 18-79-10040