Features of electrical conductivity of complex Cu-Mn-ceria-based electrolytes

I.V. Zagaynov ORCID logo , S.V. Fedorov, O.S. Antonova show affiliations and emails
Received: 17 December 2020; Revised: 03 March 2021; Accepted: 04 March 2021
Citation: I.V. Zagaynov, S.V. Fedorov, O.S. Antonova. Features of electrical conductivity of complex Cu-Mn-ceria-based electrolytes. Lett. Mater., 2021, 11(2) 152-157
BibTex   https://doi.org/10.22226/2410-3535-2021-2-152-157


Fuel cells are the most efficient means to directly convert stored chemical energy to usable electrical energy. Doped ceria is considered to be a promising electrolyte for intermediate temperature operation.Fuel cells are the most efficient means to directly convert stored chemical energy to usable electrical energy (an electrochemical reaction). Doped ceria is considered to be a promising electrolyte for operation at intermediate temperatures (500 – 600°C). It has been reported that a reduction of ceria can be neglected at this temperature. However, such temperatures are not suitable for singly doped ceria as an electrolyte in a SOFC or other devices due to high electrical resistance. Structural modification of ceria-based solid solutions by co-doping is one of the possible ways to improve their electrical conductivity at this temperature range. In this work, tri-doped ceria based solid electrolyte materials for intermediate temperature solid oxide fuel cell were synthesized by the co-precipitation method with sonication. The materials were characterized via thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, Wagner’s polarization technique, and electrochemical impedance spectroscopy. The powders were isostatically pressed at 150 MPa and sintered at 1000°C for 4 h in air to form electrolyte discs for testing. The relative densities of all the samples were more than 90 % after sintering at 1000°C. The electrical conductivity of these materials was measured by an impedance spectroscopy in the temperature range of 500 – 750°C in air. The conductivity increased with the increasing oxygen vacancies that were induced by charge compensation. It was shown that the Cu0.08Mn0.02Nd0.05Ce0.85O2 ceramics can become a promising electrolyte.

References (25)

1. D. J. L. Brett, A. Atkinson, N. P. Brandon, S. J. Skinnerd. Chem. Soc. Rev. 37, 1568 (2008). Crossref
2. J. B. Goodenough. Annu. Rev. Mater. Res. 33, 91 (2003). Crossref
3. Z. Shao, M. O. Tadé. Intermediate-Temperature Solid Oxide Fuel Cells: Materials and Applications. Springer (2016) 266 p. Crossref
4. Y.-Q. Su, L. Zhang, V. Muravev, E. J. M. Hensen. Chinese J. Catal. 41, 977 (2020). Crossref
5. C. Zhang, J. Sunarso, Z. Zhu, S. Wang, S. Liu. Solid State Ionics. 310, 121 (2017). Crossref
6. A. Arabaci. Mater. Sci. Eng. B. 260, 114646 (2020). Crossref
7. Y. Dong, S. Hampshire, J. Zhou, X. Dong, B. Lin, G. Meng, J. Eur. Ceram. Soc. 31, 2365 (2011). Crossref
8. E. Yu. Pikalova, A. N. Demina, A. K. Demin, A. A. Murashkina, V. E. Sopernikov, N. O. Esina. Inorg. Mater. 43, 735 (2007). Crossref
9. A. Arabaci. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48, 2282 (2017). Crossref
10. X. Chen, X. Sun, J. Zhou, D. Zhou, X. Zhu, J. Meng. Ceram. Int. 46, 22727 (2020). Crossref
11. J. Myung, T. H. Shin, X. Huang, G. Carins, J. T. S. Irvine. Int. J. Hydrogen Energ. 40, 12003 (2015). Crossref
12. G. Accardo, J. K. Bae, S. P. Yoon. Appl. Sci. 10, 4573 (2020). Crossref
13. S. Xu, J. Liu, K. Li, Y. Zhou, D. Xu. J. Alloy. Compd. 780, 711 (2019). Crossref
14. A. K. Devi, G. Ram kumar, C. Prerna, K. A. Bhabu, C. Daniel, V. Sabarinathan, T. R. Rajasekaran. JOM (2021). Crossref
15. I. V. Zagaynov, S. V. Fedorov, M. A. Goldberg. Process. Appl. Ceram. 13, 244 (2019). Crossref
16. I. V. Zagaynov, A. A. Konovalov, E. A. Koneva. Lett. Mater. 8, 135 (2018). Crossref
17. I. V. Zagaynov, A. V. Naumkin, Yu. V. Grigoriev. Appl. Cat. B. 236, 171 (2018). Crossref
18. Z. Zhang, W. Sigle, M. Rühle, E. Jud, L. J. Gauckler. Acta Mater. 55, 2907 (2007). Crossref
19. Y. Xue, S. An, S. Li, J. Peng, C. Cai, Y. Liu. J. Solid State Electrochem. 24, 1639 (2020). Crossref
20. N. Tian, Y. Qu, H. Men, J. Yu, X. Wang, J. Zheng. Solid State Ionics. 351, 115331 (2020). Crossref
21. J. Koettgen, M. Martin. Am. Ceram. Soc. 103, 3776 (2020). Crossref
22. N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Upadhyay, O. Parkash. J. Alloy. Compd. 781, 984 (2019). Crossref
23. K. Neuhaus, R. Dolle, H.-D. Wiemhöfer. J. Electrochem. Soc. 167, 044507 (2020). Crossref
24. Y.-C. Wu, C.-C. Lin. Int. J. Hydrogen Energ. 39, 7988 (2014). Crossref
25. I. V. Zagaynov, S. V. Fedorov, A. A. Konovalov, O. S. Antonova. Mater. Lett. 203, 9 (2017). Crossref

Similar papers