Characteristics of elastic anisotropy of Ti-Ni crystals with shape memory and their relation to extreme values of the Poisson's ratio

Received 22 September 2020; Accepted 06 November 2020;
This paper is written in Russian
Citation: S.A. Muslov. Characteristics of elastic anisotropy of Ti-Ni crystals with shape memory and their relation to extreme values of the Poisson's ratio. Lett. Mater., 2021, 11(1) 28-32
BibTex   https://doi.org/10.22226/2410-3535-2021-1-28-32

Abstract

The value and relationship between the degree of elastic anisotropy and the Poisson's ratio of Ti-Ni alloy crystals are analyzed on the basis of our own and literature data obtained experimentally and computationally from the first principles. The elastic anisotropy of Ti-Ni crystals can be determined based on numerical differences in the extreme values of μ as Aµ = / µmax - µmin|/<μ>. A strong correlation was established between the elastic anisotropy coefficient A and the factor Aµ (the correlation coefficient 0.9871).The study of physical and mechanical properties can shed light on the picture of martensitic transitions in materials that control the unique effects of shape memory and superelasticity. Martensitic transformations in metals and alloys are based on shear-type deformation processes, so the study of their elastic behavior contains important information about the nature and mechanisms of these phase transitions. In this report, we analyze the value and relationship between the degree of elastic anisotropy and the Poisson's ratio of Ti-Ni alloy crystals based on our own and literature data obtained experimentally and computationally from the first principles. A significant variability of the elastic anisotropy coefficient A of Ti-Ni crystals was established, which is due to the apparently elastic “softening” of the alloy lattice on the eve of martensitic transformations (especially the constant c44). The minimum Poisson's ratio of Ti-Ni crystals is −0.25. The maximum value of μ was 1.10, which is higher than the theoretical limit for polycrystals. Extreme values of µ were achieved for directions when the stretch is oriented along the direction <110>, i. e. diagonals of the cube face. The mean <μ> was found to be 0.41. Ti-Ni based alloys can be considered as partial auxetic — materials with negative Poisson's ratio in some directions, that is, have μ < 0 when choosing some directions and be an ordinary material with positive μ for other directions. The elastic anisotropy of Ti-Ni crystals can be determined based on the numerical differences in the extreme values of μ as Aμ = |μmax−μmin| / <μ>. A strong correlation was established between the elastic anisotropy coefficient A and the factor Aμ (the correlation coefficient 0.9871). The parameters of the linear dependence of the reduced anisotropy factor Aμ* =1.33779Aμ + 0.18542, for which Aμ* = A.

References (27)

1. C. Zener. Elasticity and Anelasticity of Metals. University of Chicago, Chicago (1948).
2. V. N. Khachin, S. A. Muslov, V. G. Pushin, Yu. I. Chumlyakov. Reports of the USSR Academy of Sciences. 295 (3), 606 (1987). (in Russian) [В. Н. Хачин, С. А. Муслов, В. Г. Пушин, Ю. И. Чумляков. Доклады АН СССР. 295 (3), 606 (1987).].
3. A. I. Epishin, D. S. Lisovenko. Journal of technical physics. 86 (10), 74 (2016). (in Russian) [А. И. Епишин, Д. С. Лисовенко. Журнал технической физики. 86 (10), 74 (2016).].
4. D. A. Konyok, K. V. Voitsekhovski, Yu. M. Pleskachevsky, S. V. Shilko. Mechanics of Composite Materials and Structures (Moscow). 10 (1), 35 (2004). (in Russian) [Д. А. Конёк, К. В. Войцеховски, Ю. М. Плескачевский, С. В. Шилько. Механика композитных материалов и конструкций (Москва). 10 (1), 35 (2004).].
5. Negative Poisson’s ratios in metal nanoplates. (in Russian) [Отрицательные коэффициенты Пуассона в металлических нанопластинках.] Electronic resource URL: https://ru.sarlpromotech.com/negative-poissons-ratios-metal-nanoplates-300141.
6. X. F. Wang, T. E. Jones, W. Li, Y. C. Zhou. Phys. Rev. B. 85, 134108 (2012). Crossref
7. K. W. Wojciechowski. Computational methods in science and technology. 11 (1), 73 (2005). Crossref
8. N. Hatcher, O. Y. Kontsevoi, A. J. Freeman. Phys. Rev. B. 80, 144203 (2009). Crossref
9. G. Bihlmayer, R. Eibler, A. Neckel. Phys. Rev. B. 50, 13113 (1994). Crossref
10. O. Mercier, K. N. Melton, G. Gremaud, J. Hagi. J. Appl. Phys. 51, 1833 (1980). Crossref
11. R. Gaillac, F.-X. Coudert. Elastic tensor analysis. Website http://progs.coudert.name/elate/mp?query=mp-571.
12. S. A. Muslov. Premartensitic states in single crystals of TiNi-TiFe and TiNi-TiCu alloys. Thesis for the degree of candidate of physical and mathematical. Tomsk State University, Tomsk (1987) 166 p. (in Russian) [С. А. Муслов. Предмартенситные состояния в монокристаллах сплавов TiNi-TiFe и TiNi-TiCu: дисс. канд. ф.-м. наук. Томск (1987) 166 c.].
13. X. Ren, K. Taniwaki, K. Otsuka, T. Suzuki, K. Tanaka, Yu. I. Chumlyakov. Philos.Mag. A. 79(1), 31 (1999). Crossref
14. X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Yu. I. Chumlyakov. Mat. Sci. Eng. A. 312, 196 (2001). Crossref
15. P. Šesták, M. Černý, J. Pokluda. Elastic Constants of Austenitic and Martensitic Phases of NiTi Shape Memory Alloy. In: Recent Advances in Mechatronics (ed. by T. Brezina, R. Jablonski). Springer, Berlin, Heidelberg (2010) pp. 1 - 6.
16. Z.-Y. Zeng et.al. Physica B. 405, 3665 (2010). Crossref
17. M. F.-X. Wagner, W. Windl. Acta Mater. 56, 6232 (2008). Crossref
18. X. Huang, C. Bungaro, V. Godlevsky, K. M. Rabe. Phys. Rev. B. 65, 014108 (2001). Crossref
19. W. S. Lai, B. X. Liu. J. Phys.: Condens. Matter. 12, L53 (2000).
20. J.-M. Lu, Q.-M. Hu, R. Yang. Acta Mater. 56, 4913 (2008). Crossref
21. Y. Y. Ye, C. T. Chan, K. M. Ho. Phys. Rev. B. 56, 3678 (1997). Crossref
22. F. Yu, Y.Liu. Computation. 7(4), 57 (2019). Crossref
23. J. B. Haskins, J. W. Lawson. J. Appl. Phys. 121, 205103 (2017). Crossref
24. D. Y. Cheng, S. J. Zhao, S. Q. Wang, H. Q. Ye. Philos. Mag. A. 81, 1625 (2001). Crossref
25. Q. M. Hu, R. Yang, J. M. Lu, L. Wang, B. Johansson, L. Vitos. Phys. Rev. B. 76, 224201 (2007). Crossref
26. Z. A. D. Lethbridge, R. I. Walton, A. S. H. Marmier, C. W. Smith, K. E. Evans. Acta Materialia. 58 (19), 6444 (2010). Crossref
27. T. Paszkiewicz, S. Wolski. Phys Status Solidi B - Basic Solid State Phys. 244 (3), 966 (2007). Crossref

Similar papers