Electrical and thermal properties of superionic KxCu2−xS (x = 0.1, 0.2, 0.25) alloys

M.K. Balapanov, R.K. Ishembetov, K.A. Kuterbekov, A.K. Baisheva, R.S. Palymbetov, S. Sakhabaeva, M.M. Kubenova, R.A. Yakshibaev show affiliations and emails
Received 24 August 2020; Accepted 11 September 2020;
This paper is written in Russian
Citation: M.K. Balapanov, R.K. Ishembetov, K.A. Kuterbekov, A.K. Baisheva, R.S. Palymbetov, S. Sakhabaeva, M.M. Kubenova, R.A. Yakshibaev. Electrical and thermal properties of superionic KxCu2−xS (x = 0.1, 0.2, 0.25) alloys. Lett. Mater., 2020, 10(4) 439-444
BibTex   https://doi.org/10.22226/2410-3535-2020-4-439-444

Abstract

The results of experimental studies of the electronic conductivity, Seebeck coefficient and thermal conductivity of  the superionic KxCu2-xS (x = 0.1, 0.2, 0.25)  alloys in the temperature range from 30 to 420 ° C are presented and discussed.The paper presents and discusses the results of experimental studies of the electronic conductivity, Seebeck coefficient and thermal conductivity of KxCu2−xS alloys (x = 0.1, 0.2, 0.25) in the temperature range from 30 to 420°C. According to the results of X-ray phase analysis, the alloys are mixtures of various phases of copper sulfide: the cubic Fm-3m phase Cu1.84S, cubic Fm-3m phase Cu2S, rhombohedral R-3m phase Cu17S9, and metastable tetragonal P43212 phase Cu2S. Differential scanning thermometry determined an endothermic peak extended from 84 to 102°C, caused by phase transitions from the rhombohedral and tetragonal phases to the hexagonal copper sulfide phase. In the temperature range above room temperature, a semiconducting character of conductivity is observed for all samples, which then changes to metallic one (above 102°C, 93°C and 270°C for К0.1Cu1.9S, К0.2Cu1.8S, К0.25Cu1.75S compositions respectively). The activation energies for the electronic conduction are 0.16, 0.22, and 0.39 eV for К0.1Cu1.9S, К0.2Cu1.8S, К0.25Cu1.75S, respectively. In the range from 130 to 270°C, the activation energy for the К0.25Cu1.75S alloy decreases to 0.16 eV. The anomalously high peak of Seebeck coefficient observed for the studied alloys at 360 – 380°C may be caused by the superionic phase transition from the hexagonal to the cubic phase in those fractions of the alloys, which were in the rhombohedral (Cu17S9) and tetragonal (Cu2S) modifications at a room temperature, and then transformed into hexagonal modifications Cu17S9 and Cu2S, respectively, at 84 and 93°C. For the К0.2Cu1.8S composition above 300°C, a strong jump in Seebeck coefficient (up to 4 mV / K) was observed and a decrease in thermal conductivity (from 0.87 to 0.4 W ∙ m−1 ∙ K−1), leading to the very high peak value of the dimensionless thermoelectric figure of merit ZT = 3.5 at 380°С, which is important for possible technical applications.

References (21)

1. K. Okamoto, Sh. Kawai. J. Appl. Phys. 12, 1130 (1973). Crossref
2. R. A. Yakshibaev, M. K. Balapanov, V. N. Konev. Sov. Phys. Solid State. 28 (5), 2189 (1986).
3. N. Kh. Abrikosov, V. F. Bankina, L. V. Poretskaya, E. V. Skudnova, S. N. Chizhevskaya. Semiconducting Chalcogenides and Alloys on Their Basis. Moscow, Nauka (1975) 220 p. (in Russian) [Н. Х. Абрикосов, В. Ф. Банкина, Л. В. Порецкая, Е. В. Скуднова, С. Н. Чижевская. Полупроводниковые халькогениды и сплавы на их основе. Москва, Наука (1975) 220 с.].
4. P. Qiu, X. Shi, L. Chen. Energy Storage Materials. 3, 85 (2016). Crossref
5. H. Gao, Ch. Zhai, Ch. Yuan, Zh.-Q. Liu, M. Zhu. Electrochimica Acta. 330, 135214 (2019). Crossref
6. M.-R. Gao, Y.-F. Xu, J. Jiang, Sh.-H. Yu. Chem. Soc. Rev. 42, 2986 (2013). Crossref
7. M. Kh. Balapanov, R. A. Yakshibaev, I. G. Gafurov, R. Kh. Ishembetov, Sh. M. Kagarmanov. Bulletin of the Russian Academy of Sciences. Physics. 69 (4), 545 (2005). (in Russian) [М. Х. Балапанов, Р. А. Якшибаев, И. Г. Гафуров, Р. Х. Ишембетов, Ш. М. Кагарманов. Известия РАН. Серия физ. 69 (4), 545 (2005).].
8. M. Kh. Balapanov, R. Kh. Ishembetov, K. A. Kuterbekov, T. N. Nurakhmetov, E. K. Urazaeva, R. A. Yakshibaev. Inorg. Materials. 50, 930 (2014). Crossref
9. R. K. Ishembetov, M. K. Balapanov, Y. K. Yulaeva. Russ. J. Electrochem. 47, 416 (2011). Crossref
10. M. Kh. Balapanov, R. Kh. Ishembetov, K. A. Kuterbekov, M. M. Kubenova, R. F. Almukhametov, R. A. Yakshibaev. Ionics. 24, 1349 (2018). Crossref
11. M. Kh. Balapanov, R. Kh. Ishembetov, A. M. Kabyshev, M. M. Kubenova, K. A. Kuterbekov, Yu. Kh. Yulaeva, R. A. Yakshibaev. Bulletin of Bashkir University. 24 (4), 823 (2019). (in Russian) [М. Х. Балапанов, Р. Х. Ишембетов, А. М. Кабышев, М. М. Кубенова, К. А. Кутербеков, Ю. Х. Юлаева, Р. А. Якшибаев. Вестник Башкирского университета. 24 (4), 823 (2019).]. Crossref
12. M. M. Kubenova, M. Kh. Balapanov, K. A. Kuterbekov, R. Kh. Ishembetov, A. M. Kabyshev, Y. Kh. Yulaeva. Eurasian J. Phys. and Func. Mat. 4 (1), 67 (2020). Crossref
13. Z.-H. Ge, X. Liu, D. Feng, J. Lin, J. He. Adv. Energy Mater. 6 (16), 1600607 (2016). Crossref
14. T. Ohtani, J. Ogura, H. Yoshihara, Y. Yokota. J. Solid State Chem. 115, 379 (1995). Crossref
15. X. Li, C. Hu, X. Kang, Q. Len, Y. Xi, K. Zhang, H. Liu. J. Mater. Chem. A. 1, 13721 (2013). Crossref
16. C. Wagner. Progr. in Sol. Chem. Phys. 7, 1 (1972). Crossref
17. I. P. Suzdalev. Nanotechnology: Physicochemistry of nanoclusters, nanostructures and nanomaterials. Moscow, LIBROCOM (2009) 592 p. (in Russian) [И. П. Суздалев. Нанотехнология: Физико-химия нанокластеров, наноструктур и наноматериалов. Москва, Кн. дом «ЛИБРОКОМ» (2009) 592 с.].
18. D. J. Chakrabarti, D. E. Laughlin. Bull. Alloy Phase Diagr. 4, 254 (1983). Crossref
19. E. H. Roseboom. Econ. Geol. 61, 641 (1966). Crossref
20. H. L. Liu, X. Shi, F. F. Xu, L. L. Zhang, W. Q. Zhang, L. D. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder. Nat. Mater. 11 (5), 422 (2012). Crossref
21. H. L. Liu, X. Yuan, P. Lu, X. Shi, F. F. Xu, Y. He, Y. S. Tang, S. Q. Bai, W. Q. Zhang, L. D. Chen, Y. Lin, L. Shi, H. Lin, X. Y. Gao, X. M. Zhang, H. Chi, C. Uher. Adv. Mater. 25, 6607 (2013). Crossref

Funding

1. Ministry of Education and Science of the Republic of Kazakhstan - BR05236795