Magnetocaloric effect Ni2MnIn alloy

K.Y. Mulyukov, I.I. Musabirov, A.V. Mashirov show affiliations and emails
Received 10 December 2012; Accepted 20 December 2012;
This paper is written in Russian
Citation: K.Y. Mulyukov, I.I. Musabirov, A.V. Mashirov. Magnetocaloric effect Ni2MnIn alloy. Lett. Mater., 2012, 2(4) 194-197
BibTex   https://doi.org/10.22226/2410-3535-2012-4-194-197

Abstract

Magnetocaloric effect investigations of polycrystalline Ni50,2Mn39,8In10 alloy are presented. Alloy was prepared by arc melting in the argon atmosphere. Influence of magnetic field on the temperature of the martensitic transformation is established according to the results of electrical resistance studies in the temperature interval of in phase transition. It is shown that in a magnetic field with strength of 1.55 MA/m martensitic transformation temperature is decreased by 4.8 K. The direct magnetocaloric effect in the temperature interval of magnetic transition and the inverse one in the structural phase transition temperature range are observed.

References (16)

1. Murray S.J., Marioni M., Allen S.M., O. Handley R.C., Lograsso T.A. Appl. Phys. Lett. 77, 886 (2000).
2. Sozinov A., Likhachev A.A., Lanska N., Ullakko K. Appl.Phys. Lett. 80, 1746 (2002).
3. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K.Ishida, K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004).
4. K. Oikawa, W. Ito, Y. Imano, Y. Sutou, R. Kainuma, K.Ishida, S. Okamoto, O. Kitakami, T. Kanomata. Appl.Phys. Lett. 88, 122507 (2006).
5. Musabirov I.I., Mulyukov Kh.Ya., Safarov I.M. Letters onMaterials. 2(3), 157 (2012).
6. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes. Nat. Mater. 4, 450 (2005).
7. Z.D. Han, D.H. Wang, C.L. Zhang, S.L. Tang, B.X. Gu, Y.W.Du. Appl. Phys. Lett. 89, 182507 (2006).
8. K. Koyama, H. Okada, K. Watanabe, T. Kanomata, R.Kainuma, W. Ito, K. Oikawa, K. Ishida. Appl. Phys. Lett.89, 182510 (2006).
9. S.Y. Yu, Z.H. Liu, G.D. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B.Zhang, X.X. Zhang, Appl. Phys. Lett. 89, 162503 (2006).
10. Sutou Y., Y. Imano, N. Koeda, T. Omori, R. Kainuma, K.Ishida, K. Oikawa. Appl. Phys. Lett. 85, 4358 (2004).
11. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X.Moya, L. Manosa, A. Planes, E. Suard, B. Ouladdiaf. Phys.Rev. B. 75, 104414 (2007);.
12. A.K. Pathak, M. Khan, I. Dubenko, S. Stadler, N. Ali.Appl. Phys. Lett. 90, 262504 (2007).
13. R.Y. Umetsu, W. Ito, K. Ito, K. Koyama, A. Fujita, K.Oikawa, T. Kanomata, R. Kainuma, K. Ishida. ScriptaMaterialia. 60(1), 25 (2009).
14. Yu S.Y., Z.H. Liu, G.D. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang, X.X. Zhang. Appl. Phys. Lett. 89, 162503 (2006).
15. Sharma V.K., M. K. Chattopadhyay, K.H.B. Shaeb, A.Chouhan, S.B. Roy. Appl. Phys. Lett. 89, 222509 (2006).
16. S.Y. Yu, S.S. Yan, L. Zhao, L. Feng, J.L. Chen, G.H. Wu.Journal of Magnetism and Magnetic Materials. 322(17), 2541 (2010).

Cited by (3)

1.
I. Musabirov, R. Mulyukov, V. Koledov. IOP Conf. Ser.: Mater. Sci. Eng. 82, 012064 (2015). Crossref
2.
I. I. Musabirov, I. M. Safarov, M. I. Nagimov, I. Z. Sharipov, V. V. Koledov, A. V. Mashirov, A. I. Rudskoi, R. R. Mulyukov. Phys. Solid State. 58(8), 1605 (2016). Crossref
3.
I. Musabirov, I. Safarov, M. Nagimov, I. Sharipov, V. Koledov, V. Khovailo, R. Mulyukov. Materials Today: Proceedings. 4(3), 4851 (2017). Crossref

Similar papers