A facile synthesis of Cr doped WO3 nanocomposites and its effect in enhanced current-voltage and impedance characteristics of thin films

V.M. Adimule ORCID logo , D. Bowmik, H. J. Adarsha show affiliations and emails
Received: 11 June 2020; Revised: 10 August 2020; Accepted: 12 August 2020
Citation: V.M. Adimule, D. Bowmik, H. J. Adarsha. A facile synthesis of Cr doped WO3 nanocomposites and its effect in enhanced current-voltage and impedance characteristics of thin films. Lett. Mater., 2020, 10(4) 481-485
BibTex   https://doi.org/10.22226/2410-3535-2020-4-481-485


Cr Doped tungsten oxide nano structures and non linear I-V, C-V, Admittance and Impedance MeasurementsIn this study we report the enhanced impedance and current-voltage (I-V) characteristics of Cr doped WO3 in different % weight (5, 8, 15 wt.%) ratio, synthesized by co- precipitation method using surfactants. Nanostructures (NS) were characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Visible (UV-Vis) spectroscopy. The pelletized samples performed I-V and impedance measurements. The impedance results reveal that the pelletized samples of highest doped Cr showed remarkable increase in the admittance with respect to the biased voltage. I-V characteristics of the highest doped Cr showed enhanced surface conductivity as compared with the observed resistance and applied current. The output power considerably increases for 15 wt.% of Cr doped WO3 and as the doping percentage of Cr increases surface conductivity, power output, admittance values considerably enhances in the material matrix. This work demonstrated that Cr doped WO3 has more current sensitivity and selectivity towards I-V, impedance, admittance value which considerably varies with the applied bias voltage. Nano particles (NPs) of Cr-WO3 can be a versatile material for the superconductor, biosensors, sensing of various gases as its greater value of impedance can help in its use in electronic devices stimulus detection of various gases and super capacitor applications.

References (31)

1. F. Zhang. Frontiers in Chemistry. 5, 80 (2017). Crossref
2. M. S. Diallo, N. A. Fromer, M. S. Jhon. Journal of Nanoparticle Research. 15, 2044 (2013). Crossref
3. J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, M. K. Danquah. Beilstein Journal of Nanotechnology. 9, 1050 (2018). Crossref
4. E. Toto, M. Palombi, S. Laurenzi, M. G. Santonicola. Ceramics International. 45 (7), 9631 (2019). Crossref
5. K. Kang, Y. Cho, K. J. Yu. Micromachines. 9 (6), 263 (2018). Crossref
6. H. Zhu, Q. Li. Electronics. 8 (5), 564 (2019). Crossref
7. S. A. Moshizi, S. Azadi, A. Belford et al. Nano-Micro Letters. 12, 109 (2020). Crossref
8. I. Khan, K. Saeed, I. Khan. Arabian Journal of Chemistry. 12 (7), 908 (2019). Crossref
9. X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan. International Journal of Molecular Sciences. 17, 1534 (2016). Crossref
10. J. Huang, J. Zeng, K. Zhu, R. Zhang, J. Liu. Nano-Micro Letters. 12, 110 (2020). Crossref
11. R. Liu. Materials. 7(4), 2747 (2014). Crossref
12. T. W. Kim, Y. Yang, F. Li, W. L. Kwan. NPG Asia Materials. 4, e18 (2012). Crossref
13. B. P. Nguyen, T. Kim, C. R. Park. Journal of Nanomaterials. 2014, 243041 (2014). Crossref
14. I. Y. Habib, A. A. Tajuddin, H. A. Noor et al. Scientific Reports. 9, 9207 (2019). Crossref
15. O. Sakhno, P. Yezhov, V. Hryn, V. Rudenko, T. Smirnova. Polymer. 12, 480 (2020). Crossref
16. W. E. Mahmoud. Journal of Physics D Applied Physics. 42, 155502 (2009). Crossref
17. J. H. Park, Y. T. Lim, O O. Park, J. K. Kim, J.-W. Yu, Y. C. Kim. Chemistry of Materials. 16 (4), 688 (2004). Crossref
18. T.-D. Nguyen. Nanoscale. 5, 9455 (2013). Crossref
19. F. L. Theiss, G. A. Ayoko, R. L. Frost. Applied Surface Science. 383, 200 (2016). Crossref
20. R. Herizchi, E. Abbasi, M. Milani, A. Akbarzadeh. Nano Medicine and Biotechnology. 44, 596 (2016). Crossref
21. Y. Wang, B. Liu, S. Xiao, X. Wang, L. Sun, H. Li, W. Xie, Q. Li, Q. Zhang, T. Wang. Applied Material International. 8 (15), 9674 (2016). Crossref
22. S. S. Kalanur. Catalysts. 9, 456 (2019). Crossref
23. J. Zhang, S. J. Deng, S. Y. Liu, J. M. Chen, B. Q. Han, Y. Wang, Y. D. Wang. Materials Technology. 29 (5), 262 (2014). Crossref
24. S. B. Upadhyay, R. K. Mishra, P. P. Sahay. Ceramics International. 42 (14), 15301 (2016). Crossref
25. W. Zhang, Y. Fan, T. Yuan, B. Lu, Y. Liu, Z. Li, G. Li, Z. Cheng, J. Xu. ACS Applied Materials & Interfaces. 12 (3), 3755 (2020). Crossref
26. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz. Journal of Physical Chemistry B. 107 (3), 668 (2003). Crossref
27. D. Meng, N. M. Shaalan, T. Yamazaki, T. Kikuta. Sensors and Actuators B Chemical. 169, 113 (2012). Crossref
28. M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali. Journal of the Iranian Chemical Society. 15, 1419 (2018). Crossref
29. P. A. Shinde, S. C. Jun. Chem Sus Chem. 13 (1), 11 (2020). Crossref
30. W. Li, P. Da, Y. Zhang, Y. Wang, X. Lin, X. Gong, G. Zheng. ACS Nano. 8 (11), 11770 (2014). Crossref
31. Z. Zhu, L. Zheng, S. Zheng, J. Chen, M. Liang, Y. Tian, D. Yang. Journal of Material Chemistry A. 6, 21419 (2018). Crossref